精英家教网 > 高中数学 > 题目详情
已知数列{an}的各项均为正数,记A(n)=a1+a2+…+an,B(n)=a2+a3+…+an+1,C(n)=a3+a4+…+an+2,n=1,2,….
(Ⅰ)若a1=1,a2=3,且对任意n∈N*,三个数A(n),B(n),C(n)组成等差数列,求数列{an}的通项公式;
(Ⅱ)若三个数A(n),B(n),C(n)组成公比为q的等比数列,证明:数列{an}是公比为q的等比数列;
(Ⅲ) (理科)在(Ⅰ)的条件下,求使不等式(1+
1
a1
)(1+
1
a2
)…(1+
1
an
)≥p
2n+1
对一切n∈N*均成立的最大实数p.
分析:(1)由A(n),B(n),C(n)组成等差数列,可得an+1-a1=an+2-a2,进而可判断出an+2-an-1=2,结合等差数列的定义,可判断数列{an}为等差数列,进而得到数列的通项公式;
(Ⅱ)若三个数A(n),B(n),C(n)组成公比为q的等比数列,可得an+2-a2=q(an+1-a1),进而可得
an+2
an+1
=
a2
a1
=q
,故数列{an}是首项为a1,公比为q的等比数列,
(III)不等式(1+
1
a1
)(1+
1
a2
)…(1+
1
an
)≥p
2n+1
可化为p≤
1
2n+1
(1+
1
a1
)(1+
1
a2
)…(1+
1
an
)对n∈N*
恒成立,构造函数并求出函数的最小值,可得p的取值范围,进而得到p的最大值.
解答:解:(Ⅰ)对任意n∈N*,三个数A(n),B(n),C(n)是等差数列,
所以B(n)-A(n)=C(n)-B(n),
即an+1-a1=an+2-a2
亦即an+2-an-1=a2-a1=2.
故数列{an}是首项为1,公差为2的等差数列.
于是an=1+(n-1)×2=2n-1
(Ⅱ)若对于任意n∈N*,三个数A(n),B(n),C(n)组成公比为q的等比数列,
则B(n)=qA(n),C(n)=qB(n),于是C(n)-B(n)=q[B(n)-A(n)],
得an+2-a2=q(an+1-a1),
即an+2-qan+1=a2-a1.由n=1有B(1)=qA(1),即a2=qa1,从而an+2-qan+1=0.
因为an>0,所以
an+2
an+1
=
a2
a1
=q
,故数列{an}是首项为a1,公比为q的等比数列,
(Ⅲ)(理科)
由题意得p≤
1
2n+1
(1+
1
a1
)(1+
1
a2
)…(1+
1
an
)对n∈N*
恒成立
F(n)=
1
2n+1
(1+
1
a1
)(1+
1
a2
)…(1+
1
an
)

F(n+1)
F(n)
=
1
2n+3
(1+
1
a1
)(1+
1
a2
)…(1+
1
an
)(1+
1
an+1
)
1
2n+1
(1+
1
a1
)(1+
1
a2
)…(1+
1
an
)
=
2n+2
(2n+1)(2n+3)
=
2(n+1)
4(n+1)2-1
2(n+1)
2(n+1)
=1

∵F(n)>0,
∴F(n+1)>F(n),
即F(n)是随n的增大而增大F(n)的最小值为F(1)=
2
3
3

p≤
2
3
3

pmax=
2
3
3
点评:本题考查的知识点是等差数列的定义及通项公式,等比数列的定义及判定方法,数列的递推公式,恒成立问题,是数列与函数的综合应用,难度较大.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

例2.已知数列{an}的通项公式是an=
2n
3n+1
(n∈N*,n≤8)
,则下列各数是否为数列中的项?如果是,是第几项?如果不是,为什么?(1)
3
5
(2)
11
17

查看答案和解析>>

科目:高中数学 来源:江西省赣县中学2011届高三适应性考试数学理科试题 题型:013

已知数列{an}的通项为an=3n+8,下列各选项中的数为数列{an}中的项的是

[  ]
A.

8

B.

16

C.

32

D.

36

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

例2.已知数列{an}的通项公式是数学公式,则下列各数是否为数列中的项?如果是,是第几项?如果不是,为什么?(1)数学公式(2)数学公式

查看答案和解析>>

科目:高中数学 来源:2011年高三数学复习(第6章 数列):6.1 数列定义与通项(解析版) 题型:解答题

例2.已知数列{an}的通项公式是,则下列各数是否为数列中的项?如果是,是第几项?如果不是,为什么?(1)(2)

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知数列{an}的通项为an=3n+8,下列各选项中的数为数列{an}中的项的是


  1. A.
    8
  2. B.
    16
  3. C.
    32
  4. D.
    36

查看答案和解析>>

同步练习册答案