精英家教网 > 高中数学 > 题目详情
20.f(x)=ax2+2(a-1)x+2在(-∞,4]上单调递减,则a的取值范围是(  )
A.$a≤\frac{1}{5}$B.$a≥\frac{1}{5}$C.$0<a≤\frac{1}{5}$D.$0≤a≤\frac{1}{5}$

分析 对函数求导,函数在(-∞,2)上单调递减,可知导数在(-∞,2)上导数值小于等于0,可求出a的取值范围

解答 解:对函数求导y′=2ax+2(a-1),函数在(-∞,4]上单调递减,
则导数在(-∞,4]上导数值小于等于0,
当a=0时,y′=-2,恒小于0,符合题意;
当a≠0时,因函导数是一次函数,故只有a>0,且最小值为y′=2a×4+2(a-1)≤0,
解得:0<a≤$\frac{1}{5}$,
∴a∈[0,$\frac{1}{5}$],
解法二、当a=0时,f(x)=-2x+2递减成立;
当a>0时,对称轴为x=$\frac{1-a}{a}$,由题意可得:$\frac{1-a}{a}$≥4,解得0<a≤$\frac{1}{5}$,
当a<0不成立.
∴a∈[0,$\frac{1}{5}$].
故选:D.

点评 本题主要二次函数的性质、考查函数的导数求解和单调性的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.某海轮以30公里/小里的速度航行,在A点测得海面上油井P在南偏东60°,向北航行40分钟后到达B点,测得油井P在南偏东30°,海轮改为北偏东60°的航向再行驶40分钟到达C点,求
①PC间的距离;
②在点C测得油井的方位角是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知集合A={1,2},B={x|x2=1},则A∪B={-1,1,2}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.(1)化简:($\frac{b}{2{a}^{2}}$)${\;}^{3}÷(\frac{2{b}^{2}}{3a})^{0}×(-\frac{b}{a})^{-3}$;
(2)若a>0,b>0,化简:$\frac{(2{a}^{\frac{2}{3}}{b}^{\frac{1}{2}})•(-6{a}^{\frac{1}{2}}{b}^{\frac{1}{3}})}{-3{a}^{\frac{1}{6}}{b}^{\frac{5}{6}}}-(4a-1)$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图所示,四个正方体中,A,B为正方体的两个顶点,M,N,P分别为其所在棱的中点,能得到AB∥面MNP的图形的序号是(  )
A.①②B.②④C.①③D.①④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知圆C的方程为x2+(y-4)2=4,点O是坐标原点,直线l:y=kx与圆C交于M,N两点.
(1)求k的取值范围;
(2)求弦MN中点G的轨迹方程,并求出轨迹的长度;
(3)设Q(m,n)是线段MN上的点,且$\frac{2}{{|OQ{|^2}}}=\frac{1}{{|OM{|^2}}}+\frac{1}{{|ON{|^2}}}$,请将n表示为m的函数,并求其定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下面几个命题中,假命题是(  )
A.“π是函数y=sinx的一个周期”或“2π是函数y=cosx的一个周期”
B.“x2+y2=0”是“xy=0”的必要不充分条件
C.“若a≤b,则2a≤2b-1”的否命题
D.“?a∈(0,+∞),函数y=ax在定义域内单调递增”的否定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设正实数x,y,z满足x+3y+z=1,则$\frac{1}{4x+8y}+\frac{x+2y}{y+z}$的最小值为$\frac{5}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设函数f(x)=x2-log2(2x+2).若0<b<1,则f(b)的值满足(  )
A.f(b)>f(-$\frac{3}{4}$)B.f(b)>0C.f(b)>f(2)D.f(b)<f(2)

查看答案和解析>>

同步练习册答案