精英家教网 > 高中数学 > 题目详情
1.函数f(x)=cosx+ax是单调函数,则实数a的取值范围是(  )
A.[1,+∞)B.(1,+∞)C.(-∞,-1]∪[1,+∞)D.(-∞,-1)∪(1,+∞)

分析 求出函数f(x)的导函数,令导函数大于等于0或小于等于0在(-∞,+∞)上恒成立,分析可得a的范围.

解答 解:∵f(x)=ax+cosx,
∴f′(x)=a-sinx,
∵f(x)=ax+cosx在(-∞,+∞)上是单调函数,
∴a-sinx≥0或a-sinx≤0在(-∞,+∞)上恒成立,
∴a≥1或a≤-1,
故选:C.

点评 解决函数的单调性已知求参数范围问题,常求出导函数,令导函数大于等于(或小于等于)0恒成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知集合A={1,2,3},那么A的真子集的个数是(  )
A.8B.7C.6D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{{\sqrt{3}}}{2}$,直线l:x-y+1=0交椭圆于A,B两点,交y轴于C点,若$3\overrightarrow{AB}=2\overrightarrow{BC}$,则椭圆的方程是x2+4y2=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知sin($\frac{π}{3}$-x)=$\frac{1}{2}$cos(x-$\frac{π}{2}$),则tan(x-$\frac{π}{6}$)等于(  )
A.$\frac{1}{6}$B.$\frac{\sqrt{3}}{9}$C.-$\frac{\sqrt{3}}{6}$D.-$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.点P(1,-2)到直线3x-4y-1=0的距离是2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设数列{an}的前n项和为Sn,已知a1=2,an+1=2Sn+2(n∈N*).
(1)求数列{an}的通项公式;
(2)设bn=$\frac{({a}_{n}+2)•({a}_{n+1}+2)}{{a}_{n}}$,数列{$\frac{1}{{b}_{n}}$}的前n项和为Tn,试证明:Tn<$\frac{1}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.过点(3,0)的l与圆x2+y2+x-6y+3=0相交于P,Q两点,且OP⊥OQ(O为原点),求l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知数列{an}满足a1=1,且${a_n}=2{a_{n-1}}+{2^n}$(n≥2,n∈N*),则an=(2n-1)•2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.8次投篮中,投中3次,其中恰有2次连续命中的情形有30种.

查看答案和解析>>

同步练习册答案