精英家教网 > 高中数学 > 题目详情

【题目】已知直线l,半径为4的圆C与直线l相切,圆心Cx轴上且在直线l的右上方.

Ⅰ)求圆C的方程;

Ⅱ)过点M (2,0)的直线与圆C交于AB两点(Ax轴上方),问在x轴正半轴上是否存在定点N,使得x轴平分∠ANB?若存在,请求出点N的坐标;若不存在,请说明理由.

【答案】x2y2=16.(Ⅱ)存在点N(8,0)时,能使得∠ANMBNM总成立.

【解析】分析:Ⅰ)根据已知求得a=0,可以求出圆C的方程.Ⅱ)分AB有斜率和没有斜率两种情况讨论,当AB有斜率时,x轴平分∠ANBkAN=-kBN ,即可求出t的值.

详解:(Ⅰ)设圆心C(a,0) (),

a=0a ().

所以圆C的方程为x2y2=16.

Ⅱ)当直线ABx轴时,x轴平分∠ANB.

当直线AB的斜率存在时,设直线AB的方程为yk(x-2),

假设N(t,0) 符合题意,又设A(x1y1),B(x2y2),

(k2+1)x2-4k2x+4k2-16=0,

所以x1x2x1x2.

x轴平分∠ANBkAN=-kBN

=0=0

2x1x2-(t+2)(x1x2)+4t=0

+4t=0t=8.

所以存在点N(8,0)时,能使得∠ANMBNM总成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知定义域为的函数是奇函数.

(1)求的值;

(2)判断函数的单调性并证明;

(2)若关于的不等式有解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义:曲线C上的点到直线l的距离的最小值称为曲线C到直线l的距离,已知曲线C1:y=x2+a到直线l:y=x的距离等于曲线C2:x2+(y+4)2=2到直线l:y=x的距离,则实数a=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设m,n∈R,若直线(m+1)x+(n+1)y﹣2=0与圆(x﹣1)2+(y﹣1)2=1相切,则m+n的取值范围是(
A.[1﹣ ,1+ ]
B.(﹣∞,1﹣ ]∪[1+ ,+∞)
C.[2﹣2 ,2+2 ]
D.(﹣∞,2﹣2 ]∪[2+2 ,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面,点Q在棱AB上.

(1)证明:平面.

(2)若三棱锥的体积为,求点B到平面PDQ的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.

(1)证明:PC⊥AD;
(2)求二面角A﹣PC﹣D的正弦值;
(3)设E为棱PA上的点,满足异面直线BE与CD所成的角为30°,求AE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于的一元二次方程有实数根.

1)求实数m的取值范围;

2)当m=2时,方程的根为,求代数式的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,半径为R的半球O的底面圆O在平面α内,过点O作平面α的垂线交半球面于点A,过圆O的直径CD作平面α成45°角的平面与半球面相交,所得交线上到平面α的距离最大的点为B,该交线上的一点P满足∠BOP=60°,则A、P两点间的球面距离为( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年6月14日,第二十一届世界杯尼球赛在俄罗斯拉开了帷幕,某大学在二年级作了问卷调查,从该校二年级学生中抽取了人进行调查,其中女生中对足球运动有兴趣的占,而男生有人表示对足球运动没有兴趣.

(1)完成列联表,并回答能否有的把握认为“对足球是否有兴趣与性别有关”?

有兴趣

没有兴趣

合计

合计

(2)若将频率视为概率,现再从该校二年级全体学生中,采用随机抽样的方法每饮抽取名学生,抽取次,记被抽取的名学生中对足球有兴趣的人数为,若每次抽取的结果是相互独立的,求的分布列和数学期望.

附:

查看答案和解析>>

同步练习册答案