精英家教网 > 高中数学 > 题目详情

如图,在直棱柱ABC—A1B1C1中,AC=BC=2,∠ACB=90º,AA1=2,E,F分别为AB、CB中点,过直线EF作棱柱的截面,若截面与平面ABC所成的二面角的大小为60º,则截面的面积为(    ).

A.3或1    B.1    C.4或1    D.3或4  

A

解析试题分析:根据截面与平面ABC所成的二面角的大小为60°,故需要分类讨论,利用截面为梯形,可以计算各边长,从而可求截面的面积.解:解:由题意,分类讨论:如右图,

截面为MNFE,延长EM,CN,AA1,交于点D,∵直棱柱ABC-A1B1C1中,∠ACB=90°,E、F分别是AC、AB的中点,∴DE⊥EF,∴∠AED为截面与平面ABC所成的二面角,∴∠AED=60°,∵AE= AC=1,∴DE=2∵EF=
BC=1∴SDEF=×2×1=1,∵DA=6,∴DA1=DA∴SDMN=SDEF=,∴截面的面积为1
设截面EFN'M'在底面中的射影为EFPQ,则EF=1,M'Q=2,CE=1,∠M'EQ=60°,∴EQ=
∴PQ=∴射影EFPQ的面积为,∵截面与平面ABC所成的二面角的大小为60°,∴截面EFN'M'的面积为÷cos60°=3故答案为A
考点:截面面积
点评:本题以直三棱柱为载体,考查截面面积的计算,搞清截面图形是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:单选题

设m,n是两条不同直线,是两个不同的平面,给出下列四个命题
①若                 ②
③若     ④若
其中正确的命题是              (       )

A.① B.② C.③④ D.②④ 

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知长方体ABCD—A1B1ClD1内接于球O,底面ABCD是边长为2的正方形,E为AA1的中点,OA⊥平面BDE,则球O的表面积为

A.8 B.16: C.14 D.18

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

如图,四面体的六条边均相等,分别是的中点,则下列四个结论中不成立的是 (    )      
                                                            

A.平面平面B.平面
C.//平面D.平面平面

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

在棱长为1的正方体ABCD—A1B1C1D1中,M和N分别为A1B1和BB1的中点,那么直线AM与CN所成角的余弦值是                       (   )

A. B. C. D. 

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

如图,平面α⊥平面βAαBβAB与平面α所成的角为,过AB分别作两平面交线的垂线,垂足为A′、B′,若,则AB与平面β所成的角的正弦值是(   )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

是平面内的一条定直线,是平面外的一个定点,动直线经过点且与角,则直线与平面的交点的轨迹是

A.圆 B.椭圆 C.双曲线 D.抛物线

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知是直线,是平面,给出下列命题:
①若,则
②若,则
③若m,n,m,n,则
④若,则
其中正确的命题是(   )。

A.①② B.②④ C.②③ D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

在三棱锥P-ABC中,PA⊥平面ABC,∠BAC=90°,D、E、F分别是棱AB、BC、CP的中点,AB=AC=1,PA=2,则直线PA与平面DEF所成角的正弦值为(  )
A.              B.             C.             D.

查看答案和解析>>

同步练习册答案