精英家教网 > 高中数学 > 题目详情
5.$\frac{3tan\frac{π}{8}}{1-ta{n}^{2}\frac{π}{8}}$=$\frac{3}{2}$.

分析 直接利用二倍角的正切函数化简求解即可.

解答 解:$\frac{3tan\frac{π}{8}}{1-ta{n}^{2}\frac{π}{8}}$=$\frac{3}{2}$tan$\frac{π}{4}$=$\frac{3}{2}$.
故答案为:$\frac{3}{2}$.

点评 本题考查二倍角公式的应用,特殊角的三角函数化简求值,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知a1=2,an+1=$\frac{1}{3}$an+$(\frac{1}{2})^{n+1}$(n∈N*),求通项an

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.定义在R上的函数f(x)=x2+|x-a|+2.(a为常数)
(1)判断函数的奇偶性;
(2)求函数在R上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.桌面上放着3个半径为1的球,两两相切,在它们上方的空间里放入一个球使其顶点(最高处)恰好和3个球的顶点在同一个平面上,该球的半径为(  )
A.$\frac{\sqrt{2}-1}{2}$B.$\frac{\sqrt{3}-1}{3}$C.$\frac{1}{3}$D.$\frac{\sqrt{3}-1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数f(x)=(1+cos2x)sin2x,x∈R,则f(x)的最小正周期为$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)在[-2,2]上是奇函数,在区间[0,2]上是减函数,且f(a-1)<f(2-a),则a的取值范围是$\frac{3}{2}$<a≤3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知f(x)=ax-lnx,a∈R.
(1)若f(x)在x=1处有极值,求f(x)的单调递增区间;
(2)当a=1,$x∈[\frac{1}{e},e]$时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,已知M(x0,y0)是椭圆C:$\frac{x^2}{6}+\frac{y^2}{3}=1$上的任一点,从原点O向圆M:${({x-{x_0}})^2}+{({y-{y_0}})^2}=2$作两条切线,分别交椭圆于点P、Q.
(1)若直线OP,OQ的斜率存在,并记为k1,k2,求证:k1k2为定值;
(2)试问B=OP2+OQ2是否为定值?若是,求出该值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在Rt△ABF中,AB=2BF=4,C,E分别是AB,AF的中点(如图1).将此三角形沿CE对折,使平面AEC⊥平面BCEF(如图2),已知D是AB的中点.

(1)求证:CD∥平面AEF;
(2)求证:平面AEF⊥平面ABF.

查看答案和解析>>

同步练习册答案