精英家教网 > 高中数学 > 题目详情
20.已知椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)经过点A(2,3),离心率$e=\frac{1}{2}$.
(1)求椭圆E的方程;
(2)若∠F1AF2的角平分线所在的直线l与椭圆E的另一个交点为B,C为椭圆E上的一点,当△ABC的面积最大时,求C点的坐标.

分析 (1)利用已知条件列出方程组,求出a,b即可得到椭圆方程.
(2)求出焦点坐标,得到直线AF1的方程,直线AF2的方程,设P(x,y)为直线l上任意一点,利用$\frac{|3x-4y+6|}{{\sqrt{{3^2}+{{(-4)}^2}}}}=|x-2|$,求出直线l的方程为2x-y-1=0.设过C点且平行于l的直线为2x-y+m=0,联立直线与椭圆方程的方程组,求出m然后求解C点的坐标.

解答 解:(1)由椭圆E经过点A(2,3),离心率$e=\frac{1}{2}$,
可得$\left\{\begin{array}{l}\frac{4}{a^2}+\frac{9}{b^2}=1\\ \frac{{{a^2}-{b^2}}}{a^2}=\frac{1}{4}\end{array}\right.$解得$\left\{\begin{array}{l}{a^2}=16\\{b^2}=12\end{array}\right.$
∴椭圆E的方程为$\frac{x^2}{16}+\frac{y^2}{12}=1$.
(2)由(1)可知F1(-2,0),F2(2,0),
则直线AF1的方程为$y=\frac{3}{4}(x+2)$,即3x-4y+6=0,
直线AF2的方程为x=2,
由点A在椭圆E上的位置易知直线l的斜率为正数.
设P(x,y)为直线l上任意一点,
则$\frac{|3x-4y+6|}{{\sqrt{{3^2}+{{(-4)}^2}}}}=|x-2|$,解得2x-y-1=0或x+2y-8=0(斜率为负数,舍去).
∴直线l的方程为2x-y-1=0.
设过C点且平行于l的直线为2x-y+m=0,
由$\left\{\begin{array}{l}\frac{x^2}{16}+\frac{y^2}{12}=1\\ 2x-y+m=0\end{array}\right.$整理得19x2+16mx+4(m2-12)=0,
由△=(16m)2-4×19×4(m2-12)=0,解得m2=76,
因为m为直线2x-y+m=0在y轴上的截距,
依题意,m>0,故$m=2\sqrt{19}$.解得x=$-\frac{16\sqrt{19}}{19}$,y=$\frac{6\sqrt{19}}{19}$.
∴C点的坐标为$(-\frac{{16\sqrt{19}}}{19},\frac{{6\sqrt{19}}}{19})$.

点评 本题考查直线与椭圆的位置关系的应用,椭圆方程的求法,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.下列命题中假命题是(  )
A.?x0∈R,lnx0<0B.?x∈(-∞,0),ex>0
C.?x>0,5x>3xD.?x0∈(0,+∞),2<sinx0+cosx0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数$f(x)=\sqrt{x}sinx$,则f'(π)=(  )
A.$\sqrt{π}$B.$-\sqrt{π}$C.$\frac{{\sqrt{π}}}{2π}$D.$\frac{{\sqrt{2π}}}{2π}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设集合A={x|x2-x-6<0},B={x|-3≤x≤1},则A∪B等于(  )
A.[-2,1)B.(-2,1]C.[-3,3)D.(-3,3]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.直线y=kx+3(k≠0)与圆(x-3)2+(y-2)2=4相交于A、B两点,若$|AB|=2\sqrt{3}$,则k的值为$-\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知圆锥的底面半径为1,侧面展开图的圆心角为60°,则此圆锥的表面积为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设二次函数f(x)=ax2+bx+c(a≠0)中的a,b,c均为奇数,求证:方程f(x)=0无整数根.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.(1)已知数列{an}满足lgxn+1=1+lgxn(n∈N*)且x1+x2+…+x100=1,求lg(x101+x102+…+x200)的值;
(2)已知数列{an}满足a1+$\frac{{a}_{2}}{2}$+$\frac{{a}_{3}}{3}$+…+$\frac{{a}_{n}}{n}$=2n,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设函数f(x)是定义在R上的偶函数,且对任意的x∈R恒有f(x+1)=f(x-1),已知当x∈[0,1]时,f(x)=2x,则有
①2是函数f(x)的周期;
②函数f(x)在(1,2)上是减函数,在(2,3)上是增函数;
③函数f(x)的最大值是1,最小值是0.
其中所有正确的命题的序号是①②.

查看答案和解析>>

同步练习册答案