【题目】已知直线l过点P(2,),且倾斜角α=,曲线C: (θ为参数),直线l与曲线C相交于不同的两点A,B.
(1)写出直线的参数方程,及曲线C的普通方程;
(2)求线段AB的中点Q的坐标,及的值.
科目:高中数学 来源: 题型:
【题目】已知椭圆的两焦点为,,离心率.
(1)求此椭圆的方程;
(2)设直线:,若与此椭圆相交于,两点,且等于椭圆的短轴长,求的值;
(3)以此椭圆的上顶点为直角顶点作椭圆的内接等腰直角三角形,这样的直角三角形是否存在?若存在,请说明有几个;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)=xln(ax+1)(a≠0).
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)若a>0且满足:对x1 , x2∈[﹣1,1],都有|f(x1)﹣f(x2)|≤ln3﹣ln2,试比较ea﹣1与 的大小,并证明.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3,从盒中任取3张卡片.
(1)求所取3张卡片上的数字完全相同的概率;
(2)表示所取3张卡片上的数字的中位数,求的分布列与数学期望.
(注:若三个数满足,则称为这三个数的中位数).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|x﹣1|+|x+a|﹣x﹣2. (Ⅰ)当a=1时,求不等式f(x)>0的解集;
(Ⅱ)设a>﹣1,且存在x0∈[﹣a,1),使得f(x0)≤0,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|xex+1|,关于x的方程f2(x)+2sinαf(x)+cosα=0有四个不等实根,sinα﹣cosα≥λ恒成立,则实数λ的最大值为( )
A.﹣
B.﹣
C.﹣
D.﹣1
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在某校矩形的航天知识竞赛中,参与竞赛的文科生与理科生人数之比为1:3,且成绩分布在范围内,规定分数在80以上(含80)的同学获奖,按文理科用分层抽样的放发抽取200人的成绩作为样本,得到成绩的频率分布直方图.
(Ⅰ)填写下面的列联表,能否有超过95%的把握认为“获奖与学生的文理科有关”;
(Ⅱ)将上述调查所得的频率视为概率,现从参赛学生中,任意抽取3名学生,记“获奖”学生人数为,求的分布列及数学期望.
附表及公式:,其中
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数:f(x)=﹣x3﹣3x2+(1+a)x+b(a<0,b∈R).
(1)令h(x)=f(x﹣1)﹣b+a+3,判断h(x)的奇偶性,并讨论h(x)的单调性;
(2)若g(x)=|f(x)|,设M(a,b)为g(x)在[﹣2,0]的最大值,求M(a,b)的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com