精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=lnx﹣ 有两个零点x1、x2
(1)求k的取值范围;
(2)求证:x1+x2

【答案】
(1)解:函数f(x)=lnx﹣ 有2个零点,

即函数g(x)=xlnx的图象与直线y=k有2个交点,

g′(x)=lnx+1,

令g′(x)>0,解得:x> ,令g′(x)<0,解得:0<x<

∴g(x)在(0, )递减,在( ,+∞)递增,

x= 是极小值点,g( )=﹣

又x→0时,g(x)→0,

x→+∞时,g(x)→+∞,g(1)=0,

g(x)的大致图象如图示:

由图象得:﹣ <k<0


(2)证明:不妨设x1<x2,由(1)得:0<x1 <x2<1,

令h(x)=g(x)﹣g( ﹣x)=xlnx﹣( ﹣x)ln( ﹣x),

h′(x)=ln[﹣(ex﹣1)2+1],

当0<x< 时,h′(x)<0,h(x)在(0, )递减,h( )=0,

∴h(x1)>0,即g(x1)>g( ﹣x1),g(x2)>g( ﹣x1),

x2 ﹣x1∈( ,+∞),g(x)在( ,+∞)递增,

∴x2 ﹣x1

故x1+x2


【解析】(1)问题转化为函数g(x)=xlnx的图象与直线y=k有2个交点,求出g(x)的单调性,画出函数图象,从而求出k的范围即可;(2)设x1<x2 , 根据函数的单调性得到x2 ﹣x1∈( ,+∞),g(x)在( ,+∞)递增,从而证出结论即可.
【考点精析】通过灵活运用利用导数研究函数的单调性,掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆C以坐标轴为对称轴,以坐标原点为对称中心,椭圆的一个焦点为,点在椭圆上,

求椭圆C的方程.

斜率为k的直线l过点F且不与坐标轴垂直,直线l交椭圆于AB两点,线段AB的垂直平分线与x轴交于点G,求点G横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中是错误命题的个数有(  )

(1)若命题p为假命题,命题为假命题,则命题“”为假命题;

(2)命题“若,则”的否命题为“若,则”;

(3)对立事件一定是互斥事件;

(4)为两个事件,则P(A∪B)=P(A)+P(B);

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】a,b为正数,给出下列命题:
①若a2﹣b2=1,则a﹣b<1;
②若 =1,则a﹣b<1;
③ea﹣eb=1,则a﹣b<1;
④若lna﹣lnb=1,则a﹣b<1.
期中真命题的有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知圆C及点

B作直线l与圆C相交于MN两点,,求直线l的方程;

在圆C上是否存在点P,使得?若存在,求点P的个数;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班学生一次数学考试成绩频率分布直方图如图所示,数据分组依次为[70,90),[90,110),[110,130),[130,150],若成绩大于等于90分的人数为36,则成绩在[110,130)的人数为(

A.12
B.9
C.15
D.18

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足an+2=an+1﹣an , 且a1=2,a2=3,Sn为数列{an}的前n项和,则S2016的值为(
A.0
B.2
C.5
D.6

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD为正方形,QA⊥平面ABCD,PD∥QA,QA=AB=PD.

(1)证明:平面PQC⊥平面DCQ;

(2)求直线DQ与面PQC成角的正弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=(1﹣ax)ln(x+1)﹣bx,其中a和b是实数,曲线y=f(x)恒与x轴相切于坐标原点.
(1)求常数b的值;
(2)当a=1时,讨论函数f(x)的单调性;
(3)当0≤x≤1时关于x的不等式f(x)≥0恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案