精英家教网 > 高中数学 > 题目详情
函数f(x)=2x-
1
x
的零点在区间(  )
A、(-1,0)
B、(0,1)
C、(1,2)
D、(2,3)
考点:函数零点的判定定理
专题:计算题,函数的性质及应用
分析:由函数的零点的判定定理判断.
解答: 解:当x<0时,f(x)=2x-
1
x
>0,
且当x→0+时,f(x)<0,
f(1)=2-1>0;
且函数f(x)=2x-
1
x
在(0,+∞)上连续,
故f(x)=2x-
1
x
所在区间为(0,1).
故选B.
点评:本题考查了函数的零点的判定理的应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

观察以下不等式:1>
1
2
;1+
1
2
+
1
3
>1;1+
1
2
+
1
3
…+
1
7
3
2
;1+
1
2
+
1
3
+…+
1
15
>2;1+
1
2
+
1
3
+…+
1
31
5
2
;由此推测第n个不等式为(  )
A、1+
1
2
+
1
3
+…+
1
2n
n
2
B、1+
1
2
+
1
3
+…+
1
2n-1
n-1
2
C、1+
1
2
+
1
3
+…+
1
2n-1
n
2
D、1+
1
2
+
1
3
+…+
1
2n-1
n
2

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在(-1,1)上的函数f(x)-f(y)=f(
x-y
1-xy
),当x∈(-1,0)时,f(x)>0,若P=f(
1
3
)+f(
1
17
),Q=f(
1
5
),R=f(-
1
3
),则P,Q,R的大小关系为       (  )
A、R>Q>P
B、R>P>Q
C、P>R>Q
D、Q>P>R

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sinx+sin(x+
π
3
),x∈[0,π],则f(x)的值域为(  )
A、[-
3
3
]
B、[-
3
2
3
]
C、[
3
2
3
]
D、[-2,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

若圆(x-3)2+(y+5)2=r2上有且只有三个点到直线4x-3y=2的距离等于l,则半径r等于(  )
A、3B、4C、5D、6

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xoy中,设抛物线C:y2=4x
(1)求抛物线C上到焦点距离等于5的点的横坐标;
(2)设命题p:过抛物线C上一点M(1,2)作两条不同的直线,分别交抛物线C于点A,B,设直线MA,MB,AB的斜率均存在且分别记为kMA,kMB,kAB
1
kMA
+
1
kMB
为定值,则kAB为定值.判断命题p的真假,并证明;
(3)写出(2)中命题p的逆命题,并判断真假(不要求证明).

查看答案和解析>>

科目:高中数学 来源: 题型:

平面内给定三个向量
a
=(3,2),
b
=(-1,2),
c
=(4,1)
(1)求满足
a
=m
b
+n
c
的实数m,n;
(2)若(
a
+k
c
)∥(2
b
-
a
),求实数k;
(3)若
d
满足(
d
-
c
)∥(
a
+
b
),且|
d
-
c
|=
5
,求
d

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P(1,a)和圆x2+y2=4.
(1)若过点P的圆的切线只有一条,求a的值及切线方程;
(2)若a=
2
,过点P的圆的两条弦AC、BD互相垂直,求四边形ABCD面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(1,2)、B(4,-4),P为x轴上一动点.
(1)若|PA|+|PB|有最小值时,求点P的坐标;
(2)若|PB|-|PA|有最大值时,求点P的坐标.

查看答案和解析>>

同步练习册答案