精英家教网 > 高中数学 > 题目详情
已知,且的夹角为钝角,则的取值范围是(  )
A.B.C.D.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在边长是2的正方体-中,分别为
的中点. 应用空间向量方法求解下列问题.

(1)求EF的长
(2)证明:平面
(3)证明: 平面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图是一个水平放置的正三棱柱是棱的中点.正三棱柱的主视图如图

(Ⅰ) 图中垂直于平面的平面有哪几个?(直接写出符合要求的平面即可,不必说明或证明)
(Ⅱ)求正三棱柱的体积;
(Ⅲ)证明:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)如图7-15,在正三棱柱ABC—A1B1C1中,各棱长都等于a,D、E分别是AC1、BB1的中点,
(1)求证:DE是异面直线AC1与BB1的公垂线段,并求其长度;
(2)求二面角E—AC1—C的大小;
(3)求点C1到平面AEC的距离。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知几何体E—ABCD如图所示,其中四边形ABCD为矩形,为等边三角形,且点F为棱BE上的动点。

(I)若DE//平面AFC,试确定点F的位置;
(II)在(I)条件下,求二面角E—DC—F的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在棱长为1正方体ABCD-A1B1C1D1中,M和N分别为A1B1和BB1的中点
(1)求直线AM和CN所成角的余弦值;
(2)若P为B1C1的中点,求直线CN与平面MNP所成角的余弦值;
(3)P为B1C1上一点,且,当 B1D⊥面PMN时,求的值.
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
一个几何体是由圆柱和三棱锥组合而成,点在圆的圆周上,其正(主)视图、侧(左)视图的面积分别为10和12,如图3所示,其中
(1)求证:
(2)求二面角的平面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,平行六面体ABCD—A1B1C1D1中,以顶点A为端点的三条棱长度都为1,且两
两夹角为60°.
(1)求AC1的长;
(2)求BD1与AC夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在棱长为1的正四面体ABCD中,E是BC的中点,则 _  ▲   .

查看答案和解析>>

同步练习册答案