【题目】已知f(x)是定义在[﹣1,1]上的奇函数,且f(1)=1,若m,n∈[﹣1,1],m+n≠0时,有 >0.
(Ⅰ)证明f(x)在[﹣1,1]上是增函数;
(Ⅱ)解不等式f(x2﹣1)+f(3﹣3x)<0
(Ⅲ)若f(x)≤t2﹣2at+1对x∈[﹣1,1],a∈[﹣1,1]恒成立,求实数t的取值范围.
【答案】解:(Ⅰ)任取﹣1≤x1<x2≤1,
则 ,
∵﹣1≤x1<x2≤1,∴x1+(﹣x2)≠0,
由已知 ,
∴f(x1)﹣f(x2)<0,即f(x1)<f(x2),
∴f(x)在[﹣1,1]上是增函数;
(Ⅱ)∵f(x)是定义在[﹣1,1]上的奇函数,且在[﹣1,1]上是增函数,
∴不等式化为f(x2﹣1)<f(3x﹣3),
∴ ,解得 ;
(Ⅲ)由(Ⅰ)知f(x)在[﹣1,1]上是增函数,
∴f(x)在[﹣1,1]上的最大值为f(1)=1,
要使f(x)≤t2﹣2at+1对x∈[﹣1,1]恒成立,只要t2﹣2at+1≥1t2﹣2at≥0,
设g(a)=t2﹣2at,对a∈[﹣1,1],g(a)≥0恒成立,
∴ ,
∴t≥2或t≤﹣2或t=0.
【解析】本题考查的是奇函数和增减性相结合的问题,用定义去证明函数的单调性。一元二次函数在指定区间内的最值问题,对称轴在指定区间内就能取到函数的最值,如果不在根据单调性去解决。
科目:高中数学 来源: 题型:
【题目】已知函数g(x)=ax2﹣2ax+1+b(a>0)在区间[0,3]上有最大值5和最小值1.设f(x)= .
(1)求a,b的值;
(2)若不等式f(x)﹣k≥0在x∈[1,4]上恒成立,求实数k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,PD⊥平面ABCD,DC⊥AD,BC∥AD,PD:DC:BC=1:1: .
(1)若AD=DC,求异面直线PA,BC所成的角;
(2)求PB与平面PDC所成角大小;
(3)求二面角D﹣PB﹣C的正切值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数 ,函数 ,其中a为常数且a>0,令函数f(x)=g(x)h(x).
(1)求函数f(x)的表达式,并求其定义域;
(2)当 时,求函数f(x)的值域;
(3)是否存在自然数a,使得函数f(x)的值域恰为 ?若存在,试写出所有满足条件的自然数a所构成的集合;若不存在,试说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知离心率为 的椭圆C: + =1(a>b>0)过点M(2,1),O为坐标原点,平行于OM的直线l交椭圆C于不同的两点A、B.
(1)求椭圆C的方程.
(2)证明:直线MA、MB与x轴围成一个等腰三角形.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com