精英家教网 > 高中数学 > 题目详情
11.已知底面边长为1,侧棱长为$\sqrt{2}$的正四棱柱的各顶点均在同一个球面上,则该球的表面积为(  )
A.$\frac{32π}{3}$B.$\frac{4π}{3}$C.D.

分析 画出图形,正四棱锥P-ABCD的外接球的球心在它的高PO1上,记为O,求出PO1,OO1,解出球的半径,求出球的表面积即可.

解答 解:正四棱锥P-ABCD的外接球的球心在它的高PO1上,
记为O,PO=AO=R,PO1=1,OO1=R-1,或OO1=1-R(此时O在PO1的延长线上),
在Rt△AO1O中,R2=1+(R-1)2得R=1,∴球的表面积S=4πR2=4π.
故选:D.

点评 本题考查了球的表面积,球的内接体问题,考查计算能力,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.已知f(x)是定义在R上的偶函数,且当x≥0时,f(x)=$\frac{x-2}{x+1}$,若对任意实数$t∈[{\frac{1}{2},2}]$,都有f(t+a)-f(t-1)>0恒成立,则实数a的取值范围是(-∞,-3)∪(0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知a=($\frac{1}{2}$)${\;}^{\frac{2}{3}}$,b=2${\;}^{-\frac{4}{3}}$,c=($\frac{1}{2}$)${\;}^{\frac{1}{3}}$,则下列关系式中正确的是(  )
A.c<a<bB.b<a<cC.a<c<bD.a<b<c

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,(a+b+c)(a+b-c)=3ab,且acosB=bcosA,试判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知对k∈R,直线y-kx-1=0与椭圆$\frac{x^2}{2}+\frac{y^2}{m}=1$恒有公共点,则实数m的取值范围是(  )
A.(1,2]B.[1,2)C.[1,2)∪(2,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.直线l过抛物线y2=2px(p>0)的焦点,且交抛物线于A,B两点,交其准线于C点,已知|AF|=3,$\overrightarrow{CB}$=3$\overrightarrow{BF}$,则p=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知f(x+2)的定义域为[-1,2],则f(2x)的定义域为(  )
A.[-1,2]B.[2,16]C.[0,2]D.[1,4]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数$f(x)=\left\{{\begin{array}{l}{(a-2)x+1,x<1}\\{{{(\frac{1}{2})}^x}-1,x≥1}\end{array}}\right.$是R上的单调递减函数,则实数a的取值范围是(  )
A.(-∞,2)B.$(-∞,\frac{1}{2}]$C.$[\frac{1}{2},2)$D.(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.“鸡兔同笼”是我国隋朝时期的数学著作《孙子算经》中的一个有趣而具有深远影响的题目:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”请画出一个解决这个问题的程序框图.

查看答案和解析>>

同步练习册答案