精英家教网 > 高中数学 > 题目详情

已知:以点C (t, )(t∈R , t ≠ 0)为圆心的圆与轴交于点O, A,与y轴交于点O, B,其中O为原点.
(1)求证:△OAB的面积为定值;
(2)设直线y = –2x+4与圆C交于点M, N,若|OM| = |ON|,求圆C的方程.

(1)过原点,设圆的方程是
,得;令
,即:的面积为定值。
(2)

解析试题分析:(1)过原点
设圆的方程是
,得;令
,即:的面积为定值。
(2) , 垂直平分线段
直线的方程是
,解得:
时,圆心的坐标为,  
此时到直线的距离
与直线相交于两点.
时,圆心的坐标为
此时到直线的距离
与直线不相交,
不符合题意舍去.
的方程为
考点:圆的方程及直线与圆相交问题
点评:第一问要证三角形面积是定值首先要求出圆与坐标轴的交点,从而确定三角形边长;第二问由直线与圆相交的性质求得参数t后要验证此时圆与坐标轴是否相交,这一点容易忽略

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知圆,直线
(1)证明:不论取什么实数,直线与圆恒交于两点;
(2)求直线被圆截得的弦长最小时的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆满足以下三个条件:(1)圆心在直线上,(2)与直线相切,(3)截直线所得弦长为6。求圆的方程。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆的圆心为原点,且与直线相切。

(1)求圆的方程;
(2)过点(8,6)引圆O的两条切线,切点为,求直线的方程。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆C与两坐标轴都相切,圆心C到直线的距离等于.
(1)求圆C的方程.
(2)若直线与圆C相切,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆轴于两点,曲线是以为长轴,直线:为准线的椭圆.

(1)求椭圆的标准方程;
(2)若是直线上的任意一点,以为直径的圆与圆相交于两点,求证:直线必过定点,并求出点的坐标;
(3)如图所示,若直线与椭圆交于两点,且,试求此时弦的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知⊙和点.

(Ⅰ)过点向⊙引切线,求直线的方程;
(Ⅱ)求以点为圆心,且被直线截得的弦长为4的⊙的方程;
(Ⅲ)设为(Ⅱ)中⊙上任一点,过点向⊙引切线,切点为. 试探究:平面内是否存在一定点,使得为定值?若存在,请举出一例,并指出相应的定值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分10分)
在极坐标系中,已知两点O(0,0),B(2).

(1)求以OB为直径的圆C的极坐标方程,然后化成直角方程;
(2)以极点O为坐标原点,极轴为轴的正半轴建立平面直角坐标系,直线l的参数方程为t为参数).若直线l与圆C相交于M,N两点,圆C的圆心为C,求DMNC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知平面直角坐标系中O是坐标原点,,圆的外接圆,过点(2,6)的直线为
(1)求圆的方程;
(2)若与圆相切,求切线方程;
(3)若被圆所截得的弦长为,求直线的方程。

查看答案和解析>>

同步练习册答案