精英家教网 > 高中数学 > 题目详情
(坐标系与参数方程选做题) 若直线与曲线(ϕ为参数,a>0)有两个公共点A,B,且|AB|=2,则实数a的值为    ;在此条件下,以直角坐标系的原点为极点,x轴正方向为极轴建立坐标系,则曲线C的极坐标方程为   
【答案】分析:利用同角三角函数的基本关系消去参数∅,化为普通方程为 (x-a)2+y2=2 ①,求出圆心C到直线的距离d,由弦长公式求得实数a的值;把x=ρcosθ,y=ρsinθ代入①化简可得
曲线C的极坐标方程.
解答:解:由曲线(ϕ为参数,a>0),可得cos∅=x-a,sin∅=y,
平方相加可得 (x-a)2+y2=2 ①,表示以C(a,0)为圆心,以为半径的圆,
圆心C到直线的距离等于d==
再由弦长公式可得 =1==,解得a=2.
①即 (x-2)2+y2=2 ②,
把x=ρcosθ,y=ρsinθ代入②,化简可得 ρ2-4ρcosθ+2=0,
故答案为 2,ρ2-4ρcosθ+2=0.
点评:本题主要考查把参数方程化为普通方程的方法,点到直线的距离公式,把直角坐标方程化为极坐标方程,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(坐标系与参数方程选做题)以原点为极点,x轴的正半轴为极轴,单位长度一致的坐标系下,已知曲线C1的参数方程为
x=2cosθ+3
y=2sinθ
(θ为参数),曲线C2的极坐标方程为ρsinθ=a,则这两曲线相切时实数a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(坐标系与参数方程选做题)在极坐标系(ρ,θ)(ρ>0,0≤θ<
π
2
)中,曲线ρ=2sinθ与ρ=2cosθ的交点的极坐标为
2
π
4
2
π
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(坐标系与参数方程选做题)
曲线
x=t
y=
1
3
t2
(t为参数且t>0)与直线ρsinθ=1(ρ∈R,0≤θ<π)交点M的极坐标为
(2,
π
6
(2,
π
6

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)(坐标系与参数方程选做题)已知在极坐标系下,点A(1,
π
3
),B(3,
3
),O是极点,则△AOB的面积等于
3
3
4
3
3
4

(2)(不等式选做题)关于x的不等式|
x+1
x-1
|>
x+1
x-1
的解集是
(-1,1)
(-1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

(坐标系与参数方程选做题)在极坐标系中,已知点P(2,
π3
),则过点P且平行于极轴的直线的极坐标方程为
 

查看答案和解析>>

同步练习册答案