精英家教网 > 高中数学 > 题目详情
如图,在三棱锥P-ABC中,PC⊥平面ABC,△ABC为正三角形,D、E、F分别是BC,PB,CA的中点.
(1)证明平面PBF⊥平面PAC;
(2)判断AE是否平行于平面PFD,并说明理由;
(3)若PC=AB=2,求三棱锥P-DEF的体积.

【答案】分析:(1)先根据PC⊥平面ABC,BF?平面ABC得到PC⊥BF;再结合BF⊥AC即可得到BF⊥平面PAC,进而证明结论;
(2)先假设AE∥平面PFD,借助于假设证得平面ABE∥平面PFD,与P∈平面PFD,P∈平面ABE相矛盾,即可说明结论;
(3)直接根据D,E,F分别为BC,PB,CA的中点,把所求体积进行转化;转化为VP-BDF即可求出结论.
解答:解:(1)∵PC⊥平面ABC,BF?平面ABC.
∴PC⊥BF.由条件得BF⊥AC,PC∩AC=C.
∴BF⊥平面PAC,BF?平面PBF,
∴平面PBF⊥平面PAC.
(2):AE不平行于平面PFD.
反证法:假设AE∥平面PFD,
∵AB∥FD,FD?平面PFD.
∴AB∥平面PFD.
∵AE∩AB=A,
∴平面ABE∥平面PFD.
∵P∈平面PFD,P∈平面ABE.矛盾.
则假设不成立,
所以:AE不平行于平面PFD
(3)∵D,E,F分别为BC,PB,CA的中点.
∴VP-DEF=VC-DEF=VE-DFC=VE-BDF
=VP-BDF
=××S△BDF•PC
=××S△ABC•PC
=××××2×2××2
=
点评:本题主要考查平面与平面垂直的判定以及棱锥体积的求法.棱锥体积的求法常用转化思想,变为易求的几何体的体积,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在三棱锥P-ABC中,PA、PB、PC两两垂直,且PA=3.PB=2,PC=1.设M是底面ABC内一点,定义f(M)=(m,n,p),其中m、n、p分别是三棱锥M-PAB、三棱锥M-PBC、三棱锥M-PCA的体积.若f(M)=(
1
2
,x,y),且
1
x
+
a
y
≥8恒成立,则正实数a的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥P-ABC中,PA⊥底面ABC,∠ACB=90°,AE⊥PB于E,AF⊥PC于F,若PA=AB=2,∠BPC=θ,则当△AEF的面积最大时,tanθ的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥P-ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D、E分别为AB、AC中点.
(Ⅰ)求证:DE‖平面PBC;
(Ⅱ)求证:AB⊥PE;
(Ⅲ)求二面角A-PB-E的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥P-ABC中,已知PA=PB=PC,∠BPA=∠BPC=∠CPA=40°,一绳子从A点绕三棱锥侧面一圈回到点A的最短距离是
3
,则PA=
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在三棱锥P-ABC中,PA⊥底面ABC,∠BCA=90°,AP=AC,点D,E分别在棱
PB,PC上,且BC∥平面ADE
(I)求证:DE⊥平面PAC;
(Ⅱ)当二面角A-DE-P为直二面角时,求多面体ABCED与PAED的体积比.

查看答案和解析>>

同步练习册答案