精英家教网 > 高中数学 > 题目详情

【题目】已知U=RA={x|a2x2-5ax-6<0}B{x||x-2|≥1}.

1)若a=1,求(UAB

2)求不等式a2x2-5ax-6<0aR)的解集.

【答案】1{x|x≤-1x≥6};(2a=0时,不等式的解集为Ra>0时,不等式的解集为(-);a<0时,不等式的解集为(-.

【解析】

1)解不等式求出集合,再由集合运算法则计算.

2)分类讨论,时,方程两根为,按它们的大小分类得解集.

1a=1时,A={x|x2-5x-6<0}={x|-1<x<6}B={x||x-2|≥1}={x|x≤1x≥3}

UA={x|x≤-1x≥6}

则(UAB={x|x≤-1x≥6}

2a=0时,不等式化为-6<0,解集为R

a≠0时,不等式化为(ax+1)(ax-6<0,即(x+)(x-<0

a>0,则-<,不等式的解集为(-);

a<0,则->,不等式的解集为(-);

综上知,a=0时,不等式的解集为R

a>0时,不等式的解集为(-);

a<0时,不等式的解集为(-.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】“共享单车”的出现,为我们提供了一种新型的交通方式.某机构为了调查人们对此种交通方式的满意度,从交通拥堵不严重的城市和交通拥堵严重的城市分别随机调查了20个用户,得到了一个用户满意度评分的样本,并绘制出茎叶图如图:

1)根据茎叶图,比较两城市满意度评分的平均值的大小(不要求计算具体值,给出结论即可);

2)若得分不低于85分,则认为该用户对此种交通方式“认可”,否则认为该用户对此种交通方式“不认可”,请根据此样本完成此列联表,并据此样本分析是否有的把握认为城市拥堵与认可共享单车有关;

合计

认可

不认可

合计

3)若此样本中的城市和城市各抽取1人,则在此2人中恰有一人认可的条件下,此人来自城市的概率是多少?

(参考公式:

0.10

0.05

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】20175月,来自一带一路沿线的20国青年评选出了中国的新四大发明:高铁、扫码支付、共享单车和网购.乘坐高铁可以网络购票,为了研究网络购票人群的年龄分布情况,在531日重庆到成都高铁9600名网络购票的乘客中随机抽取了120人进行了统计并记录,按年龄段将数据分成6组:,得到如下直方图:

1)试通过直方图,估计531日当天网络购票的9600名乘客年龄的中位数;

2)若在调查的且年龄在段乘客中随机抽取两人,求两人均来自同一年龄段的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市交通部门为了对该城市共享单车加强监管,随机选取了100人就该城市共享单车的推行情况进行问卷调查,并将问卷中的这100人根据其满意度评分值(百分制)按照分成5组,制成如图所示频率分直方图.

1)求图中x的值;

2)求这组数据的平均数和中位数;

3)已知满意度评分值在内的男生数与女生数3:2,若在满意度评分值为的人中随机抽取2人进行座谈,求2人均为男生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,O的中点.

1)证明:平面

2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知梯形中,,四边形为矩形,,平面平面

Ⅰ)求证:平面

Ⅱ)求平面与平面所成锐二面角的余弦值;

Ⅲ)在线段上是否存在点,使得直线与平面所成角的正弦值为,若存在,求出线段的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆的圆心坐标为,且该圆经过点.

1)求圆的标准方程;

2)若点也在圆上,且弦长为8,求直线的方程;

3)直线交圆两点,若直线的斜率之积为2,求证:直线过一个定点,并求出该定点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面,底面为菱形,且,E的中点.

(1)求证:平面平面;

(2)棱上是否存在点F,使得平面?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P-ABCD中,底面ABCD为矩形,PD⊥平面ABCD,点EF分别是ABPC的中点.

(1)求证:AB⊥平面PAD

(2)求证:EF//平面PAD

查看答案和解析>>

同步练习册答案