精英家教网 > 高中数学 > 题目详情
10.函数y=$\frac{1}{2}$x与y=||x-a|-1|的图象有三个公共点,则a=1或2.

分析 作出第二个函数图象,左右移动图象,观察交点个数与a的关系得出答案.

解答 解:令f(x)=||x-a|-1|=0,得x=a-1,或x=a+1.且当x=a时,f(x)取得极大值1.作出f(x)图象如图所示,
∵函数y=$\frac{1}{2}$x与y=||x-a|-1|的图象有三个公共点,
∴a-1=0,或$\frac{a}{2}$=1,∴a=1,或a=2.
故答案为:1或2.

点评 本题考查了函数图象的变换及交点个数,作出第二个函数图象是解题关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知定义在R上的函数f(x)的图象的对称中心为(1008,2),数列{an}的前n项和为Sn,且满足an=f(n),n∈N*,求S2015

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.Sn是数列{an}的前n项和log2Sn=n(n=1,2,3,…),那么数列{an}(  )
A.是公比为2的等比数列B.是公差为2的等差数列
C.是公比为$\frac{1}{2}$的等比数列D.既非等差数列又非等比数列

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知定义在非零实数集上的函数f(x)满足f(xy)=f(x)+f(y),则函数f(x)的奇偶性是偶函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.若向量$\overrightarrow{a}$=(x1,y1,z1),$\overrightarrow{b}$=(x2,y2,z2),则$\frac{{x}_{1}}{{x}_{2}}$=$\frac{{y}_{1}}{{y}_{2}}$=$\frac{{z}_{1}}{{z}_{2}}$是向量$\overrightarrow{a}$、$\overrightarrow{b}$共线的充分不必要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知$\frac{π}{2}$<α<π,tanα-$\frac{1}{tanα}$=-$\frac{3}{2}$.
(1)求tanα的值;
(2)求$\frac{cos(\frac{3π}{2}+α)-cos(π-α)}{sin(\frac{π}{2}-α)}$的值;
(3)求2sin2α-sinαcosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.求值域:f(x)=4-$\frac{1}{\sqrt{{2}^{x}-1}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.斜率为-2,且过两条直线3x-y+4=0和x+y-4=0交点的直线方程为2x+y-4=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列函教中,值城是(0,+∞)的是(  )
A.y=$\sqrt{{x}^{2}-2x+1}$B.y=$\frac{x+2}{x+1}$(x∈(0,+∞))C.y=$\frac{2}{{x}^{2}+2x+1}$(x∈N)D.y=$\frac{1}{|x+1|}$

查看答案和解析>>

同步练习册答案