A. | $\frac{\sqrt{2}}{6}$ | B. | $\frac{\sqrt{3}}{16}$ | C. | 2$\sqrt{3}$ | D. | $\sqrt{3}$ |
分析 利用向量$\overrightarrow{m}$=(b-c,c-a),$\overrightarrow{n}$=(b,c+a),且$\overrightarrow{m}$⊥$\overrightarrow{n}$,结合余弦定理,求出A,利用直线y=bx+c过圆C:x2+y2-2x-2y=1的圆心(1,1),可得b+c=1,bc≤$\frac{1}{4}$,由此可求△ABC面积的最大值.
解答 解:∵向量$\overrightarrow{m}$=(b-c,c-a),$\overrightarrow{n}$=(b,c+a),且$\overrightarrow{m}$⊥$\overrightarrow{n}$,
∴b(b-c)+(c-a)(c+a)=0,
∴b2+c2-a2=bc,
∴cosA=$\frac{1}{2}$,
∴A=60°,
∵直线y=bx+c过圆C:x2+y2-2x-2y=1的圆心(1,1),
∴b+c=1,∴bc≤$\frac{1}{4}$
∴S△ABC=$\frac{1}{2}bcsinA$=$\frac{\sqrt{3}}{4}$bc≤$\frac{\sqrt{3}}{16}$,
∴△ABC面积的最大值为$\frac{\sqrt{3}}{16}$,
故选B.
点评 本题考查向量数量积公式,考查余弦定理,考查三角形面积的计算,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | 3 | B. | 4 | C. | 5 | D. | 6 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{2}$ | B. | 2 | C. | 8 | D. | 12 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com