精英家教网 > 高中数学 > 题目详情
8.在△ABC中,a,b,c分别为三个内角A,B,C所对的边,设向量$\overrightarrow{m}$=(b-c,c-a),$\overrightarrow{n}$=(b,c+a),且$\overrightarrow{m}$⊥$\overrightarrow{n}$.若直线y=bx+c过圆C:x2+y2-2x-2y=1的圆心,则△ABC面积的最大值为(  )
A.$\frac{\sqrt{2}}{6}$B.$\frac{\sqrt{3}}{16}$C.2$\sqrt{3}$D.$\sqrt{3}$

分析 利用向量$\overrightarrow{m}$=(b-c,c-a),$\overrightarrow{n}$=(b,c+a),且$\overrightarrow{m}$⊥$\overrightarrow{n}$,结合余弦定理,求出A,利用直线y=bx+c过圆C:x2+y2-2x-2y=1的圆心(1,1),可得b+c=1,bc≤$\frac{1}{4}$,由此可求△ABC面积的最大值.

解答 解:∵向量$\overrightarrow{m}$=(b-c,c-a),$\overrightarrow{n}$=(b,c+a),且$\overrightarrow{m}$⊥$\overrightarrow{n}$,
∴b(b-c)+(c-a)(c+a)=0,
∴b2+c2-a2=bc,
∴cosA=$\frac{1}{2}$,
∴A=60°,
∵直线y=bx+c过圆C:x2+y2-2x-2y=1的圆心(1,1),
∴b+c=1,∴bc≤$\frac{1}{4}$
∴S△ABC=$\frac{1}{2}bcsinA$=$\frac{\sqrt{3}}{4}$bc≤$\frac{\sqrt{3}}{16}$,
∴△ABC面积的最大值为$\frac{\sqrt{3}}{16}$,
故选B.

点评 本题考查向量数量积公式,考查余弦定理,考查三角形面积的计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.对于函数f(x),如果存在非零常数T,使得当x取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数,已知函数y=f(x)(x∈R)满足f(x+2)=f(x),且x∈[-1,1]时,f(x)=x2,则y=f(x)与y=log5x的图象的交点个数为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数f(x)=2sin(ωx-$\frac{π}{6}$)-1(ω>0)最小正周期是π,则函数f(x)的单调递增区间是[kπ-$\frac{π}{6}$,kπ+$\frac{π}{3}$],k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知△ABC中,点A(-2,0),B(2,0),C(x,1)
(i)若∠ACB是直角,则x=$±\sqrt{3}$
(ii)若△ABC是锐角三角形,则x的取值范围是(-2,-$\sqrt{3}$)∪(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆C:$\left\{\begin{array}{l}{x=2cosφ}\\{y=sinφ}\end{array}\right.$(φ为参数),A,B是C上的动点,且满足OA⊥OB(O为坐标原点),以原点O为极点,以x轴的正半轴为极轴建立极坐标系,点D的极坐标为(-4,$\frac{π}{3}$).
(1)求线段AD的中点M的轨迹E的普通方程;
(2)利用椭圆C的极坐标方程证明$\frac{1}{|OA{|}^{2}}$+$\frac{1}{|OB{|}^{2}}$为定值,并求△AOB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若tanθ=$\frac{4}{3}$,sinθ<0,则cosθ=-$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设函数f(x)=cosωx(ω>0),将y=f(x)的图象向右平移$\frac{π}{4}$个单位长度后,所得的图象与原图象重合,则ω的最小值等于(  )
A.$\frac{1}{2}$B.2C.8D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列命题正确的个数是(  )
①$\overrightarrow{AB}+\overrightarrow{BA}=\overrightarrow 0$; ②$\overrightarrow{BC}+\overrightarrow{AB}=\overrightarrow{AC}$; ③$\overrightarrow{AB}-\overrightarrow{AC}=\overrightarrow{BC}$; ④$0•\overrightarrow{AB}=0$.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在直角坐标系xoy中,已知曲线${C_1}:\left\{\begin{array}{l}x=cosα\\ y={sin^2}α\end{array}\right.$(α为参数),在以O为极点,x轴正半轴为极轴的极坐标系中,曲线${C_2}:ρcos(θ-\frac{π}{4})=-\frac{{\sqrt{2}}}{2}$,曲线C3:ρ=2sinθ
(1)求曲线C1,C2交点的直角坐标
(2)设点A、B分别为曲线C2,C3上的动点,求|AB|的最大值.

查看答案和解析>>

同步练习册答案