定义在上的函数,当时,,且对任意的 ,有,
(Ⅰ)求证:;
(Ⅱ)求证:对任意的,恒有;
(Ⅲ)证明:是上的增函数.
(Ⅰ)见解析;(Ⅱ)见解析;(Ⅲ).
解析试题分析:(Ⅰ)令即可得证;(Ⅱ)令得,,由已知x>0时,f(x)>1>0,当x<0时,-x>0,f(-x)>0,故对任意x∈R,f(x)>0;(Ⅲ)先证明为增函数:任取x2>x1,则,,故,故其为增函数.
试题解析:(Ⅰ)令,则f(0)=[f(0)]2 ∵ f(0)≠0 ∴ f(0)=1 2分
(Ⅱ)令则 f(0)=f(x)f(-x)∴ 4分
由已知x>0时,f(x)>1>0,当x<0时,-x>0,f(-x)>0
∴,又x=0时,f(0)=1>0 6分
∴对任意x∈R,f(x)>0 7分
(Ⅲ)任取x2>x1,则f(x2)>0,f(x1)>0,x2-x1>0 8分
∴
∴ f(x2)>f(x1) ∴ f(x)在R上是增函数 13分
考点:抽象函数、增函数的证明、一元二次不等式解法.
科目:高中数学 来源: 题型:解答题
相关部门对跳水运动员进行达标定级考核,动作自选,并规定完成动作成绩在八分及以上的定为达标,成绩在九分及以上的定为一级运动员. 已知参加此次考核的共有56名运动员.
(1)考核结束后,从参加考核的运动员中随机抽取了8人,发现这8人中有2人没有达标,有3人为一级运动员,据此请估计此次考核的达标率及被定为一级运动员的人数;
(2)经过考核,决定从其中的A、B、C、D、E五名一级运动员中任选2名参加跳水比赛(这五位运动员每位被选中的可能性相同). 写出所有可能情况,并求运动员E被选中的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数.
(1) 当时,函数恒有意义,求实数a的取值范围;
(2) 是否存在这样的实数a,使得函数在区间上为增函数,并且的最大值为1.如果存在,试求出a的值;如果不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
工厂生产某种产品,次品率与日产量(万件)间的关系(为常数,且),已知每生产一件合格产品盈利元,每出现一件次品亏损元.
(1)将日盈利额(万元)表示为日产量(万件)的函数;
(2)为使日盈利额最大,日产量应为多少万件?(注: )
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
二次函数f(x)满足f (x+1)-f (x)=2x且f (0)=1.
⑴求f (x)的解析式;
⑵在区间[-1,1]上,y=f (x)的图象恒在y=2x+m的图象上方,试确定实数m的范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知一家公司生产某种产品的年固定成本为10万元,每生产1千件该产品需另投入2.7万元,设该公司一年内生产该产品千件并全部销售完,每千件的销售收入为万元,且
(Ⅰ)写出年利润(万元)关于年产量(千件)的函数解析式;
(Ⅱ)年产量为多少千件时,该公司在这一产品的产销过程中所获利润最大
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某单位设计的两种密封玻璃窗如图所示:图1是单层玻璃,厚度为8 mm;图2是双层中空玻璃,厚度均为4 mm,中间留有厚度为的空气隔层.根据热传导知识,对于厚度为的均匀介质,两侧的温度差为,单位时间内,在单位面积上通过的热量,其中为热传导系数.假定单位时间内,在单位面积上通过每一层玻璃及空气隔层的热量相等.(注:玻璃的热传导系数为,空气的热传导系数为.)
(1)设室内,室外温度均分别为,,内层玻璃外侧温度为,外层玻璃内侧温度为,且.试分别求出单层玻璃和双层中空玻璃单位时间内,在单位面积上通过的热量(结果用,及表示);
(2)为使双层中空玻璃单位时间内,在单位面积上通过的热量只有单层玻璃的4%,应如何设计的大小?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com