【题目】已知函数在其定义域内有两个不同的极值点.
(1)求的取值范围;
(2)设两个极值点分别为,证明: .
【答案】(1);(2)证明见解析.
【解析】试题分析:(1)函数在其定义域内有两个不同的极值点等价于方程在有两个不同根,即函数与函数的图象在上有两个不同交点,讨论函数单调性和极值根据图象即可求的取值范围;(2)作差得, ,即.原不等式等价于 , ,则,只需证明不等式成立即可.
试题解析:(1)依题意,函数的定义域为,所以方程在有两个不同根.
即,方程在有两个不同根.
转化为,函数与函数的图象在上有两个不同交点.
又,即时, , 时, ,
所以在上单调增,在上单调减,从而.
又有且只有一个零点是1,且在时, ,在时, ,
所以的草图如下,
可见,要想函数与函数的图象在上有两个不同交点,只需.
(2)由(1)可知分别是方程的两个根,即, ,
设,作差得, ,即.
原不等式等价于
令,则, ,
设, , ,
∴函数在上单调递增,
∴,
即不等式成立,
故所证不等式成立.
科目:高中数学 来源: 题型:
【题目】为了比较两种治疗失眠症的药(分别称为A药,B药)的疗效,随机地选取20位患者服用A药,20位患者服用B药,这40位患者在服用一段时间后,记录他们日平均增加的睡眠时间(单位:h),试验的观测结果如下:
服用A药的20位患者日平均增加的睡眠时间:
服用B药的20位患者日平均增加的睡眠时间:
(Ⅰ)分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好?
(Ⅱ)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,某小区准备将一块闲置的直角三角形(其中)土地开发成公共绿地,设计时,要求绿地部分(图中阴影部分)有公共绿地走道,且两边是两个关于走道对称的三角形(和),现考虑方便和绿地最大化原则,要求点与点不重合,点落在边上,设.
(1)若,绿地“最美”,求最美绿地的面积;
(2)为方便小区居民行走,设计时要求最短,求此时公共绿地走道的长度.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将甲、乙、丙、丁四名同学按一定顺序排成一行,要求自左向右,且甲不排在第一,乙不排在第二,丙不排在第三,丁不排在第四,比如:“乙甲丁丙”是满足要求的一种排法,试写出他们四个人所有不同的排法.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校高一年级学生身体素质体能测试的成绩(百分制)分布在内,同时为了了解学生爱好数学的情况,从中随机抽取了名学生,这名学生体能测试成绩的频率分布直方图如图所示,各分数段的“爱好数学”的人数情况如表所示.
(1)求的值;
(2)用分层抽样的方法,从体能成绩在的“爱好数学”学生中随机抽取6人参加某项活动,现从6人中随机选取2人担任领队,记体能成绩在内领队人数为人,求的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某上市股票在30天内每股的交易价格P(元)与时间t(天)组成有序数对(t,P),点(t,P)落在如下图象中的两条线段上.该股票在30天内(包括30天)的日交易量Q(万股)与时间t(天)的部分数据如下表所示:
(1)根据提供的图象,写出该种股票每股的交易价格P(元)与时间t(天)所满足的函数关系式;
(2)根据表中数据确定日交易量Q(万股)与时间t(天)的一次函数关系式;
(3)用y(万元)表示该股票日交易额,写出y关于t的函数关系式,并求出这30天中第几天日交易额最大,最大值为多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com