精英家教网 > 高中数学 > 题目详情

【题目】(1)利用“五点法”画出函数在长度为一个周期的闭区间的简图.
(2)并说明该函数图象可由的图象经过怎样平移和伸缩变换得到的.

【答案】1)见解析;(2)见解析.

【解析】

先列表如图确定的值,后描点并画图,利用“五点法”画出函数在长度为一个周期的闭区间的简图.
(2)依据的图象上所有的点向左平移个单位长度,,再把所得图象的横坐标伸长到原来的2倍(纵坐标不变),得到.

(1)先列表,后描点,并画图


(2)把的图象上所有的点向左平移个单位长度,得到的图象,
再把所得图象的横坐标伸长到原来的2倍(纵坐标不变),得到的图象.
或把的图象横坐标伸长到原来的2倍(纵坐标不变),得到的图象.
再把所得图象上所有的点向左平移个单位长度,得到,

的图象.

本题考查五点法作函数的图象,函数的图象变换,考查计算能力,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】A,B,C,D是空间不共面的四点,它们到平面a的距离之比依次为1:1:1:2,则满足条件的平面a的个数是:

A. 1 B. 4 C. 7 D. 8.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的三边长分别为abc,其面积为S,则的内切圆O的半径.这是一道平面几何题,其证明方法采用“等面积法”设空间四面体四个面的面积分别为积为V,内切球半径为R.请用类比推理方法猜测对空间四面体存在类似结论为______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】3本相同的小说,2本相同的诗集全部分给4名同学,每名同学至少1本,则不同的分法有( )

A. 24B. 28C. 32D. 36

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数e为自然对数的底数,e≈2.718).对于任意的(0,e),在区间(0,e)上总存在两个不同的,使得,则整数a的取值集合是_______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在底面是菱形的四棱锥中,,点上,且.

1)点在棱上且平面,求线段的长度;

2)在(1)的条件下,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某海滨浴场一天的海浪高度是时间的函数,记作,下表是某天各时的浪高数据:

0

3

6

9

12

15

18

21

24

1.5

1.0

0.5

1.0

1.5

1.0

0.5

0.99

1.5

1)选用一个三角函数来近似描述这个海滨浴场的海浪高度与时间的函数关系;

2)依据规定,当海浪高度不少于时才对冲浪爱好者开放海滨浴场,请依据(1)的结论,判断一天内的之间,有多少时间可供冲浪爱好者进行冲浪?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在等比数列中,

1)已知,求

2)已知,求

3)已知,求

4)已知,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,则函数的图象为( )

A. B.

C. D.

查看答案和解析>>

同步练习册答案