精英家教网 > 高中数学 > 题目详情

【题目】如图所示,直四棱柱ABCD﹣A1B1C1D1内接于半径为 的半球O,四边形ABCD为正方形,则该四棱柱的体积最大时,AB的长是(
A.1
B.
C.
D.2

【答案】D
【解析】解:设AB=a,BB1=h, 则OB= a,连接OB1 , OB,则OB2+BB12=OB12=3,
=3,
∴a2=6﹣2h2
故正四棱柱的体积是V=a2h=6h﹣2h3
∴V′=6﹣6h2
当0<h<1时,V′>0,1<h< 时,V′<0,
∴h=1时,该四棱柱的体积最大,此时AB=2.
故选:D.

设AB=a,BB1=h,求出a2=6﹣2h2 , 故正四棱柱的体积是V=a2h=6h﹣2h3 , 利用导数,得到该正四棱柱体积的最大值,即可得出结论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知 为不共共线的非零向量,且| |=| |=1,则以下四个向量中模最大者为(
A. +
B. +
C. +
D. +

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高职院校进行自主招生文化素质考试,考试内容为语文、数学、英语三科,总分为200分.现从上线的考生中随机抽取20人,将其成绩用茎叶图记录如下:

td style="width:16.2pt; padding:3.75pt 5.4pt; vertical-align:middle">

15

6

5

4

16

3

5

8

8

2

17

2

3

6

8

8

8

6

5

18

5

7

19

2

3

(Ⅰ)计算上线考生中抽取的男生成绩的方差;(结果精确到小数点后一位)

(Ⅱ)从上述茎叶图180分以上的考生中任选2人作为考生代表出席座谈会,求所选考生恰为一男一女的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,平面平面 的中点.

(1)求证: 平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB交PB于点F.
(1)证明PA∥平面EDB;
(2)证明PB⊥平面EFD;
(3)求二面角C﹣PB﹣D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆 和抛物线 为坐标原点.

(1)已知直线和圆相切,与抛物线交于两点,且满足,求直线的方程;

(2)过抛物线上一点作两直线和圆相切,且分别交抛物线两点,若直线的斜率为,求点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】六个面都是平行四边形的四棱柱称为平行六面体.已知在平行四边形ABCD中(如图1),有AC2+BD2=2(AB2+AD2),则在平行六面体ABCD﹣A1B1C1D1中(如图2),AC12+BD12+CA12+DB12等于(
A.2(AB2+AD2+AA12
B.3(AB2+AD2+AA12
C.4(AB2+AD2+AA12
D.4(AB2+AD2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动点P(x,y)满足方程xy=1(x>0).
(Ⅰ)求动点P到直线l:x+2y﹣ =0距离的最小值;
(Ⅱ)设定点A(a,a),若点P,A之间的最短距离为2 ,求满足条件的实数a的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,椭圆过点,直线轴于,且为坐标原点.

1)求椭圆的方程;

2)设是椭圆的上顶点,过点分别作直线交椭圆两点,设这两条直线的斜率分别为,且,证明:直线过定点.

查看答案和解析>>

同步练习册答案