【题目】如图,在四棱锥中,PA⊥平面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.证明:
(1)CD⊥AE;
(2)PD⊥平面ABE.
【答案】(1)详见解析;(2)详见解析.
【解析】
(1)关键证明CD⊥平面PAC,(2)关键证明AE⊥PD,AB⊥PD。
证明:(1)在四棱锥中,
∵PA⊥平面ABCD,CD平面ABCD,
∴PA⊥CD.∵AC⊥CD,PA∩AC=A,
∴CD⊥平面PAC.
而AE平面PAC,∴CD⊥AE.
(2)由PA=AB=BC,∠ABC=60°,可得AC=PA.
∵E是PC的中点,∴AE⊥PC.
由(1)知AE⊥CD,且PC∩CD=C,
∴AE⊥平面PCD.
而PD平面PCD,∴AE⊥PD.
∵PA⊥平面ABCD,∴PA⊥AB.
又∵AB⊥AD且PA∩AD=A,
∴AB⊥平面PAD,而PD平面PAD,
∴AB⊥PD.
又∵AB∩AE=A,
∴PD⊥平面ABE.
科目:高中数学 来源: 题型:
【题目】某商场进行购物摸奖活动,规则是:在一个封闭的纸箱中装有标号分别为1,2,3,4,5,6的六个小球,每次摸奖需要同时取出两个球,每位顾客最多有两次摸奖机会,并规定:若第一次取出的两球号码连号,则中奖,摸奖结束;若第一次未中奖,则将这两个小球放回后进行第二次摸球,若与第一次取出的两个小球号码相同,则为中奖,按照这样的规则摸奖,中奖的概率为( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题中正确的个数①“,”的否定是“,”;②用相关指数可以刻画回归的拟合效果,值越小说明模型的拟合效果越好;③命题“若,则”的逆命题为真命题;④若的解集为,则.
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中国是世界互联网服务应用最好的国家,一部智能手机就可以跑遍国内所有地方,中国市场的移动支付普及率高得惊人.一家大型超市委托某高中数学兴趣小组调查该超市的顾客使用移动支付的情况,调查人员从年龄在内的顾客中,随机抽取了人,调查他们是否使用移动支付,结果如下表:
年龄 | ||||||||
使用 | ||||||||
不使用 |
(1)为更进一步推动移动支付,超市准备对使用移动支付的每位顾客赠送个环保购物袋,若某日该超市预计有人购物,试根据上述数据估计,该超市当天应准备多少个环保购物袋?
(2)填写下面列联表,并根据列联表判断是否有的把握认为使用移动支付与年龄有关?
年龄 | 年龄 | 小计 | |
使用移动支付 | |||
不使用移动支付 | |||
合计 |
附:下面的临界值表供参考:
参考数据:
,其中.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(2018·江西六校联考)在△ABC中,角A,B,C所对的边分别为a,b,c,a=4,b=4,cosA=-.
(1)求角B的大小;
(2)若f(x)=cos2x+sin2(x+B),求函数f(x)的单调递增区间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量,,,,函数,的最小正周期为.
(1)求的单调增区间;
(2)方程;在上有且只有一个解,求实数n的取值范围;
(3)是否存在实数m满足对任意x1∈[-1,1],都存在x2∈R,使得++m(-)+1>f(x2)成立.若存在,求m的取值范围;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校从参加某次知识竞赛的1000同学中,随机抽取60名同学将其成绩(百分制,均为整数)分成,,,,,六组后,得到部分频率分布直方图(如图),观察图形中的信息,回答下列问题:
(1)补全频率分布直方图,并估计本次知识竞赛的均分;
(2)如果确定不低于85分的同学进入复赛,问这1000名参赛同学中估计有多少人进人复赛;
(3)若从第一组,第二组和第六组三组学生中分层抽取6人,再从这6人中随机抽取2人,求所抽取的2人成绩之差的绝对值大于20的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com