精英家教网 > 高中数学 > 题目详情
6.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x,x>0}\\{f(x+6),x≤0}\end{array}\right.$,则f(-8)的值是(  )
A.-2B.2C.0D.1

分析 由已知得f(-8)=f(-2)=f(4)=log24,由此能求出结果.

解答 解:∵函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x,x>0}\\{f(x+6),x≤0}\end{array}\right.$,
∴f(-8)=f(-2)=f(4)=log24=2.
故选:B.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=sin(2x+$\frac{π}{3}$),则函数f(x)图象的对称轴为(  )
A.x=$\frac{π}{12}$+kπ(k∈z)B.x=$\frac{π}{12}$+$\frac{kπ}{2}$(k∈z)C.x=-$\frac{π}{6}$+kπ(k∈z)D.x=-$\frac{π}{6}$+$\frac{kπ}{2}$(k∈z)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.数列$\frac{1}{2}$,$\frac{1}{3}$,$\frac{2}{3}$,$\frac{1}{4}$,$\frac{2}{4}$,$\frac{3}{4}$,…,$\frac{1}{m+1}$,$\frac{2}{m+1}$,…,$\frac{m}{m+1}$…的第20项是$\frac{5}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知f'(x)为定义在$({0,\frac{π}{2}})$上的函数f(x)的导函数,且cosx•f(x)<f'(x)•sinx在$({0,\frac{π}{2}})$上恒成立,则(  )
A.$\sqrt{3}f({\frac{π}{4}})>\sqrt{2}f({\frac{π}{3}})$B.$\sqrt{2}f({\frac{π}{6}})>f({\frac{π}{4}})$C.$\sqrt{3}f({\frac{π}{6}})<f({\frac{π}{3}})$D.$f(1)<2f({\frac{π}{6}})sin1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图示,边长为4的正方形ABCD与正三角形ADP所在平面互相垂直,M、Q分别是PC,AD的中点.
(1)求证:PA∥面BDM
(2)求多面体P-ABCD的体积
(3)试问:在线段AB上是否存在一点N,使面PCN⊥面PQB?若存在,指出N的位置,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若关于x的函数f(x)=$\frac{a{x}^{2}+2x+{a}^{2}+sinx}{{x}^{2}+a}$,(a>0)的最大值为M,最小值为N,且M+N=8,则实数a的值为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.曲线y=x2+ex在(0,1)处的切线与坐标轴所围三角形的面积等于$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.将角α的终边顺时针旋转$\frac{π}{2}$,则它与以原点为圆心,1为半径的单位圆的交点的坐标是(  )
A.(cosα,sinα)B.(cosα,-sinα)C.(sinα,-cosα)D.(sinα,cosα)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知△ABC中,点D为BC中点,AB=2,AC=4.
(1)若B=$\frac{π}{3}$,求sinA;
(2)若AD=$\sqrt{3}$,求BC.

查看答案和解析>>

同步练习册答案