【题目】已知函数
(1)若,试确定函数的单调区间;
(2)若,且对于任意, 恒成立,试确定实数的取值范围.
科目:高中数学 来源: 题型:
【题目】一个质地均匀的正四面体的四个面上分别标示着数字1,2,3,4,一个质地均匀的骰子(正方体)的六个面上分别标示数字1,2,3,4,5,6,先后抛掷一次正四面体和骰子.
(1)列举出全部基本事件;
(2)求被压在底部的两个数字之和小于5的概率;
(3)求正四面体上被压住的数字不小于骰子上被压住的数字的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知极点与直角坐标系原点重合,极轴与轴的正半轴重合,曲线的极坐标方程为.
(Ⅰ)求曲线的直角坐标方程;
(Ⅱ)已知直线的参数方程为(为参数),直线交曲线于两点,若恰好为线段的三等分点,求直线的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数(, )为奇函数,且相邻两对称轴间的距离为.
(1)当时,求的单调递减区间;
(2)将函数的图象沿轴方向向右平移个单位长度,再把横坐标缩短到原来的(纵坐标不变),得到函数的图象.当时,求函数的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知离心率为的椭圆:经过点,且是顶点均不与椭圆四个顶点重合的椭圆一个内接四边形.
(Ⅰ)求椭圆的方程;
(Ⅱ)若,试判断的面积是否为定值?若为定值,求出该定值;若不为定值,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学为了解2017届高三学生的性别和喜爱游泳是否有关,对100名高三学生进行了问卷调查,得到如下列联表:
喜欢游泳 | 不喜欢游泳 | 合计 | |
男生 | 10 | ||
女生 | 20 | ||
合计 |
已知在这100人中随机抽取1人,抽到喜欢游泳的学生的概率为.
(Ⅰ)请将上述列联表补充完整;
(Ⅱ)判断是否有99.9%的把握认为喜欢游泳与性别有关?
附:
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com