精英家教网 > 高中数学 > 题目详情
10、定义在R上的周期函数f(x)是偶函数,若f(x)的最小正周期为4,且当x∈[0,2]时,f(x)=2-x,则f(2008)=
2
分析:由函数的周期性与偶函数的性质,对f(2008)转化求值即可,宜先用周期性再利用偶函数的性质进行转化.
解答:解:由题意f(x)的最小正周期为4,故f(2008)=f(0)
又当x∈[0,2]时,f(x)=2-x,
∴f(2008)=f(0)=2
故答案为2
点评:本题考查函数的周期性,解题关键是利用周期性将求未知解析式的区间上的函数值的问题转化为已知解析式的区间上求解
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

例4、已知函数y=f(x)是定义在R上的周期函数,周期T=5,函数y=f(x)(-1≤x≤1)是奇函数.又知y=f(x)在[0,1]上是一次函数,在[1,4]上是二次函数,且在x=2时函数取得最小值-5.
①证明:f(1)+f(4)=0;②求y=f(x),x∈[1,4]的解析式;③求y=f(x)在[4,9]上的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个函数f(x),如果对任意一个三角形,只要它的三边长a,b,c都在f(x)的定义域内,就有f(a),f(b),f(c)也是某个三角形的三边长,则称f(x)为“保三角形函数”.
(Ⅰ)判断f1(x)=
x
,f2(x)=x,f3(x)=x2中,哪些是“保三角形函数”,哪些不是,并说明理由;
(Ⅱ)如果g(x)是定义在R上的周期函数,且值域为(0,+∞),证明g(x)不是“保三角形函数”;
(Ⅲ)若函数F(x)=sinx,x∈(0,A)是“保三角形函数”,求A的最大值.
(可以利用公式sinx+siny=2sin
x+y
2
cos
x-y
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在R上的周期函数,其最小正周期为2,且当x∈[-1,1)时,f(x)=|x|则函数y=f(x)的图象与函数y=log4x的图象的交点个数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的周期函数f(x)的最小正周期是T,若y=f(x),x∈(0,T),有反函数y=f-1(x),(x∈D),则函数y=f(x),x∈(T,2T)的反函数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)为定义在R上的周期函数,g(x)为定义在R上的非周期函数,且g(x)≥0,则下列命题正确的个数是(  )
①[f(x)]2必为周期函数;
②f(g(x))必为周期函数;
g(x)
不是周期函数;
④g(f(x))必为周期函数.

查看答案和解析>>

同步练习册答案