【题目】如图,在四棱锥中,底面是矩形,是的中点,与交于点,平面,,,.
(1)求证;平面平面
(2)求直线与平面所成角的正弦值.
【答案】(1)见解析;(2)
【解析】
(1)以为原点,为轴,为轴,过作平面的垂线为轴,建立空间直角坐标系,利用向量法证明,由平面,得出,结合直线与平面垂直的判定定理证明平面,最后由平面与平面垂直的判定定理证明平面平面;
(2)计算出平面的一个法向量,利用向量计算出向量与的夹角的余弦值,取其绝对值作为直线与平面所成角的正弦值。
(1)以为原点,为轴,为轴,过作平面的垂线为轴,建立空间直角坐标系,
,0,,,,,,0,,,,,
,,,,,,
,,
平面,平面,,
,面,
平面,平面平面
(2)以为原点,,,分别为,,轴,建立空间直角坐标系,
,,,
,,,,,,,0,,
设平面的法向量,,,
则,取,得,
设直线与平面所成角为,
则.
直线与平面所成角的正弦值为.
科目:高中数学 来源: 题型:
【题目】中国国际智能产业博览会(智博会)每年在重庆市举办一届,每年参加服务的志愿者分“嘉宾”、“法医”等若干小组,年底,来自重庆大学、西南大学、重庆医科大学、西南政法大学的500名学生在重庆科技馆多功能厅参加了“志愿者培训”,如图是四所大学参加培训人数的不完整条形统计图,现用分层抽样的方法从中抽出20人作为2019年中国国际智博会服务的志愿者.
(1)分别求出从重庆大学、西南大学、重庆医科大学、西南政法大学抽出的志愿者人数;
(2)若“嘉宾”小组的2名志愿者只能从重庆医科大学或西南政法大学抽出,求这2人分别来自不同大学的概率(结果用分数表示).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线,为其焦点,椭圆,,为其左右焦点,离心率,过作轴的平行线交椭圆于两点,.
(1)求椭圆的标准方程;
(2)过抛物线上一点作切线交椭圆于两点,设与轴的交点为,的中点为,的中垂线交轴为,,的面积分别记为,,若,且点在第一象限.求点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】条形码是由一组规则排列的条、空及其对应的代码组成,用来表示一定的信息,我们通常见的条形码是“”通用代码,它是由从左到右排列的个数字(用,,…,表示)组成,这些数字分别表示前缀部分、制造厂代码、商品代码和校验码,其中是校验码,用来校验前个数字代码的正确性.图(1)是计算第位校验码的程序框图,框图中符号表示不超过的最大整数(例如).现有一条形码如图(2)所示(),其中第个数被污损,那么这个被污损数字是( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的右焦点为,过作轴的垂线交椭圆于点(点在轴上方),斜率为的直线交椭圆于,两点,过点作直线交椭圆于点,且,直线交轴于点.
(1)设椭圆的离心率为,当点为椭圆的右顶点时,的坐标为,求的值.
(2)若椭圆的方程为,且,是否存在使得成立?如果存在,求出的值;如果不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com