精英家教网 > 高中数学 > 题目详情
某社团组织名志愿者利用周末和节假日参加社会公益活动,活动内容是:1、到各社区宣传慰问,倡导文明新风;2、到指定的医院、福利院做义工,帮助那些需要帮助的人.各位志愿者根据各自的实际情况,选择了不同的活动项目,相关的数据如下表所示:
 
宣传慰问
义工
总计
20至40岁
11
16
27
大于40岁
15
8
23
总计
26
24
50
(1) 分层抽样方法在做义工的志愿者中随机抽取6名,年龄大于40岁的应该抽取几名?
(2) 上述抽取的6名志愿者中任取2名,求选到的志愿者年龄大于40岁的人数的数学期望.
(1)2人;(2).

试题分析:(1)根据分层抽样中的比例关系得到第一问的结论(2)利用概率得到每种情况下的概率,列出分布列,利用期望的公式求出答案.
试题解析:(1)若在做义工的志愿者中随机抽取6名,则抽取比例为     2分
∴ 年龄大于40岁的应该抽取人.                4分   
(2)在上述抽取的6名志愿者中任取2名,假设选到年龄大于40岁的人数为,
∵  6名志愿者中有2人的年龄大于40岁,其余4人的年龄在20到40岁之间,
可能的取值为.                              5分
,,     8分
的分布列为








   10分
∴  的数学期望为         12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

生产A,B两种元件,其质量按测试指标划分为:指标大于或等于82为正品,小于82为次品,现随机抽取这两种元件各100件进行检测,检测结果统计如下:
测试指标





元件A
8
12
40
32]
8
元件B
7
18
40
29
6
(1)试分别估计元件A、元件B为正品的概率;
(2)生产一件元件A,若是正品可盈利50元,若是次品则亏损10元;生产一件元件B,若是正品可盈利100元,若是次品则亏损20元,在(1)的前提下;
(i)求生产5件元件B所获得的利润不少于300元的概率;
(ii)记X为生产1件元件A和1件元件B所得的总利润,求随机变量X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某项考试按科目A、科目B依次进行,只有当科目A成绩合格时,才可继续参加科目B的考试.已知每个科目只允许有一次补考机会,两个科目成绩均合格方可获得证书.现某人参加这项考试,科目A每次考试成绩合格的概率均为,科目B每次考试成绩合格的概率均为.假设各次考试成绩合格与否均互不影响.
(1)求他不需要补考就可获得证书的概率;
(2)在这项考试过程中,假设他不放弃所有的考试机会,记他参加考试的次数为,求 的分布列及数学期望E.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(14分)如图所示,机器人海宝按照以下程序运行

1从A出发到达点B或C或D,到达点B、C、D之一就停止;
②每次只向右或向下按路线运行;
③在每个路口向下的概率
④到达P时只向下,到达Q点只向右.
(1)求海宝过点从A经过M到点B的概率,求海宝过点从A经过N到点C的概率;
(2)记海宝到点B、C、D的事件分别记为X=1,X=2,X=3,求随机变量X的分布列及期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

为了解甲、乙两厂产品的质量,从两厂生产的产品中分别随机抽取各10件样品,测量产品中某种元素的含量(单位:毫克).如图是测量数据的茎叶图:

规定:当产品中的此种元素含量不小于18毫克时,该产品为优等品.
(1)试用上述样本数据估计甲、乙两厂生产的优等品率;
(2)从乙厂抽出的上述10件样品中,随机抽取3件,求抽到的3件样品中优等品数的分布列及其数学期望
(3)从甲厂的10件样品中有放回的随机抽取3件,也从乙厂的10件样品中有放回的随机抽取3件,求抽到的优等品数甲厂恰比乙厂多2件的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

为了整顿道路交通秩序,某地考虑将对行人闯红灯进行处罚.为了了解市民的态度,在普通行人中随机选取了200人进行调查,得到如下数据:
处罚金额x(元)
0
5
10
15
20
会闯红灯的人数y
80
50
40
20
10
若用表中数据所得频率代替概率.现从这5种处罚金额中随机抽取2种不同的金额进行处罚,在两个路口进行试验.
(Ⅰ)求这两种金额之和不低于20元的概率;
(Ⅱ)若用X表示这两种金额之和,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

样本中共有5个个体,其值分别为.若该样本的平均值为1,则样本方差为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某人上楼梯,每步上一阶的概率为,每步上二阶的概率为,设该人从台阶下的平台开始出发,到达第阶的概率为.
(1)求;;
(2)该人共走了5步,求该人这5步共上的阶数ξ的数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列是随机变量ξ的分布列







x
则随机变量ξ的数学期望是
A.0.44                B.0.52            C.1.40        D.条件不足

查看答案和解析>>

同步练习册答案