精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)当时,求的单调区间;

(2)当时,关于的不等式上恒成立,求的取值范围.

【答案】(1)的减区间为,增区间为.(2)

【解析】

1)对函数,进行求导,判断函数的单调性,进而求出的单调区间。

2,即,构造设,则只需恒成立即可,对进行求导,分类讨论,根据的单调性,求出满足条件的的取值范围。

解:(1)当时,

,当时,是减函数,

是增函数,

所以,的减区间为,增区间为.

(1)当时,,即.

,则只需恒成立即可.

易知,因为,所以.

①当时,,此时上单调递减,

所以,与题设矛盾;

②当时,由,当时,

时,,此时上单调递减,所以,当时,,与题设矛盾;

③当时,,故上单调递增,所以恒成立.

综上,.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知圆,抛物线的顶点为,准线的方程为为抛物线上的动点,过点作圆的两条切线与轴交于.

(Ⅰ)求抛物线的方程;

(Ⅱ)若,求△面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C的顶点为坐标原点O,对称轴为x轴,其准线过点.

(1)求抛物线C的方程;

(2)过抛物线焦点F作直线l,使得抛物线C上恰有三个点到直线l的距离都为,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给定椭圆.称圆心在原点O,半径为的圆是椭圆C准圆.若椭圆C的一个焦点为,其短轴上的一个端点到F的距离为

(1)求椭圆C的方程和其准圆方程;

(2)P是椭圆C准圆上的一个动点,过动点P作直线,使得与椭圆C都只有一个交点,试判断是否垂直?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着社会的发展,终身学习成为必要,工人知识要更新,学习培训必不可少,现某工厂有工人1000名,其中250名工人参加短期培训(称为类工人),另外750名工人参加过长期培训(称为类工人),从该工厂的工人中共抽查了100名工人,调查他们的生产能力(此处生产能力指一天加工的零件数)得到类工人生产能力的茎叶图(左图),类工人生产能力的频率分布直方图(右图).

(1)问类、类工人各抽查了多少工人,并求出直方图中的

(2)求类工人生产能力的中位数,并估计类工人生产能力的平均数(同一组中的数据用该组区间的中点值作代表);

(3)若规定生产能力在内为能力优秀,由以上统计数据在答题卡上完成下面的列联表,并判断是否可以在犯错误概率不超过0.1%的前提下,认为生产能力与培训时间长短有关.能力与培训时间列联表

短期培训

长期培训

合计

能力优秀

能力不优秀

合计

参考数据:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

参考公式:,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数,)以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求曲线的普通方程和曲线的直角坐标方程;

(2)设曲线交于两点,点,若成等比数列,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是(

A.为真命题,则均为假命题;

B.命题,则的逆否命题为真命题;

C.等比数列的前项和为,若的否命题为真命题;

D.平面向量的夹角为钝角的充要条件是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底数).

1)求函数的值域;

2)若不等式对任意恒成立,求实数的取值范围;

3)证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,且曲线恰有一个公共点.

(Ⅰ)求曲线的极坐标方程;

(Ⅱ)已知曲线上两点满足,求面积的最大值.

查看答案和解析>>

同步练习册答案