【题目】如图,抛物线的焦点到准线的距离与椭圆的长半轴相等,设椭圆的右顶点为,在第一象限的交点为,为坐标原点,且的面积为.
(1)求椭圆的标准方程;
(2)若过点的直线交抛物线于两点.
①求证:恒为钝角;
②射线分别交椭圆于两点,记的面积分别是,问是否存在直线,使得?若存在,求出直线的方程;若不存在,说明理由.
科目:高中数学 来源: 题型:
【题目】已知某几何体的俯视图是如图所示的矩形,正视图(或称主视图)是一个底边长为8、高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6、高为4的等腰三角形.
(1)求该几何体的体积;
(2)求该几何体的侧面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合A={x|2≤x<7},B={x|3<x<10},C={x|x<a}.
(1)求A∪B,(RA)∩B;
(2)若A∩C≠,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】A,B两城相距100 km,在两地之间距A城x km处的D地建一核电站给A,B两城供电.为保证城市安全,核电站与城市距离不得少于10 km.已知供电费用与供电距离的平方和供电量之积成正比,比例系数λ=0.25.若A城供电量为20亿度/月,B城为10亿度/月.
(1)求x的取值范围;
(2)把月供电总费用y表示成x的函数;
(3)核电站建在距A城多远,才能使供电费用最小?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义在(﹣1,1)上的奇函数f(x),在x∈(﹣1,0)时,f(x)=2x+2﹣x.
(1)求f(x)在(﹣1,1)上的表达式;
(2)用定义证明f(x)在(﹣1,0)上是减函数;
(3)若对于x∈(0,1)上的每一个值,不等式m2xf(x)<4x﹣1恒成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以下四个关于圆锥曲线的命题中
①设为两个定点,为非零常数,,则动点的轨迹为双曲线;
②方程的两根可分别作为椭圆和双曲线的离心率;
③设定圆上一定点作圆的动点弦,为坐标原点,若,则动点的轨迹为椭圆;
④过点作直线,使它与抛物线仅有一个公共点,这样的直线有3条;
其中真命题的序号为_________________.(写出所有真命题的序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点(-3,-1)和(4,-6)在直线3x-2y-a=0的两侧,则实数a的取值范围为( )
A. (-7,24)
B. (-∞,-7)∪(24,+∞)
C. (-24,7)
D. (-∞,-24)∪(7,+∞)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com