精英家教网 > 高中数学 > 题目详情
如图,已知抛物线y2=2px(p>0)的焦点恰好是椭圆的右焦点F,且两条曲线的交点的连线过F,则该椭圆的离心率为( )
A.
B.
C.
D.
【答案】分析:先求出抛物线y2=2px(p>0)的焦点坐标,再利用两条曲线的交点的连线过F,求出其中一个交点的坐标,最后利用定义求出2a和2c就可求得椭圆的离心率.
解答:解:因为抛物线y2=2px(p>0)的焦点F为(,0),设椭圆另一焦点为E.
当x=时代入抛物线方程得y=±p.又因为PQ经过焦点F,所以P(,p)且PF⊥OF.
所以|PE|==p,|PF|=P.|EF|=p.
故2a=p+p,2c=p.e==-1.
故选 A.
点评:本题考查椭圆与抛物线的综合问题.在求椭圆的离心率时,一般是求出a和c,也可以先求出b和c或a,b;再利用a,b,c之间的关系来求离心率e.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知抛物线y2=2px(p>0)的焦点恰好是椭圆
x2
a2
+
y2
b2
=1
的右焦点F,且两条曲线的交点的连线过F,则该椭圆的离心率为(  )
A、
2
-1
B、2(
2
-1)
C、
5
-1
2
D、
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知抛物线y2=2px(p>0),焦点为F,准线为直线l,P为抛物线上的一点,过点P作l的垂线,垂足为点Q.当P的横坐标为3时,△PQF为等边三角形.
(1)求抛物线的方程;
(2)过点F的直线交抛物线于A,B两点,交直线l于点M,交y轴于G.
①若
MA
=λ1
AF
MB
=λ2
BF
,求证:λ12为常数;
②求
GA
GB
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

过抛物线焦点垂直于对称轴的弦叫做抛物线的通径.如图,已知抛物线y2=2px(p>0),过其焦点F的直线交抛物线于A(x1,y1)、B(x2,y2)两点,过A、B作准线的垂线,垂足分别为A1、B1
(1)求出抛物线的通径,证明x1x2和y1y2都是定值,并求出这个定值;
(2)证明:A1F⊥B1F.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•西城区一模)如图,已知抛物线y2=x及两点A1(0,y1)和A2(0,y2),其中y1>y2>0.过A1,A2分别作y轴的垂线,交抛物线于B1,B2两点,直线B1B2与y轴交于点A3(0,y3),此时就称A1,A2确定了A3.依此类推,可由A2,A3确定A4,….记An(0,yn),n=1,2,3,….
给出下列三个结论:
①数列{yn}是递减数列;
②对?n∈N*,yn>0;
③若y1=4,y2=3,则y5=
23

其中,所有正确结论的序号是
①②③
①②③

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知抛物线y2=2px(p>0),过它的焦点F的直线l与其相交于A,B两点,O为坐标原点.
(Ⅰ)若抛物线过点(1,2),求它的方程;
(Ⅱ)在(1)的条件下,若直线l的斜率为l,求AB弦长.

查看答案和解析>>

同步练习册答案