精英家教网 > 高中数学 > 题目详情

已知正三棱柱ABC-A1B1C1,底面边长AB=2,AB1⊥BC1,点O、O1分别是边AC,A1C1的中点,建立如图所示的空间直角坐标系.
(1)求正三棱柱的侧棱长;
(2)若M为BC1的中点,试用基向量数学公式数学公式数学公式表示向量数学公式
(3)求异面直线AM与BC所成角.

解:(1)设侧棱长为b,则A(0,-1,0),B1,0,b),B(,0,0),C1(0,1,b)
={,1,b},={-,1,b} …3 分
∵AB1⊥BC1∴-3+1+b2=0,b=…(5分)
(2)∵M为BC1的中点,
…(8分)
(3)设异面直线AM与BC所成角为α,…(10分),∴α=90°…(12分)
分析:(1)利用坐标表示点,进而表示向量,借助于AB1⊥BC1,可建立方程,从而可求正三棱柱的侧棱长;
(2)利用M为BC1的中点,可得,从而可解;
(3)先求的坐标,利用其数量积,可求异面直线AM与BC所成角.
点评:本题的考点是用空间向量求直线间的夹角与距离,主要考查用坐标表示向量,考查异面直线AM与BC所成角,关键是用坐标表示向量
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知正三棱柱ABC-A1B1C1的底面边长为1,高为h(h>2),动点M在侧棱BB1上移动.设AM与侧面BB1C1C所成的角为θ.
(1)当θ∈[
π
6
π
4
]
时,求点M到平面ABC的距离的取值范围;
(2)当θ=
π
6
时,求向量
AM
BC
夹角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正三棱柱ABC-A1B1C1的每条棱长均为a,M为棱A1C1上的动点.
(1)当M在何处时,BC1∥平面MB1A,并证明之;
(2)在(1)下,求平面MB1A与平面ABC所成的二面角的大小;
(3)求B-AB1M体积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正三棱柱ABC-A1B1C1,底面边长为8,对角线B1C=10,
(1)若D为AC的中点,求证:AB1∥平面C1BD;
(2)若CD=2AD,BP=λPB1,当λ为何值时,AP∥平面C1BD;
(3)在(1)的条件下,求直线AB1到平面C1BD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知正三棱柱ABC-A1B1C1中,D是BC的中点,AA1=AB=1.
(1)求证:平面AB1D⊥平面B1BCC1
(2)求证:A1C∥平面AB1D;
(3)求二面角B-AB1-D的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•湖北模拟)如图,已知正三棱柱ABC-A1B1C1各棱长都为a,P为棱A1B上的动点.
(Ⅰ)试确定A1P:PB的值,使得PC⊥AB;
(Ⅱ)若A1P:PB=2:3,求二面角P-AC-B的大小;
(Ⅲ)在(Ⅱ)的条件下,求点C1到面PAC的距离.

查看答案和解析>>

同步练习册答案