精英家教网 > 高中数学 > 题目详情

【题目】鲁班锁是中国传统的智力玩具,起源于古代汉族建筑中首创的榫卯结构,这种三维的拼插器具内部的凹凸部分(即榫卯结构)啮合,十分巧妙.从外观上看,是严丝合缝的十字立方体,其上下、左右、前后完全对称;六根等长的正四棱柱分成三组,经90°榫卯起来.如图所示,正四棱柱的高为8,底面正方形的边长为1,将这个鲁班锁放进一个球形容器内,则该球形容器半径的最小值为(容器壁的厚度忽略不计)(

A.B.C.D.

【答案】C

【解析】

根据鲁班锁的对称性,可取三组长方体中的一组进行计算,则球心为该长方体的中心,再根据长方体外接球的直径为长方体体对角线求解即可.

结合鲁班锁的对称性,球心为三组长方体的中心,且每个长方体由两个正四棱柱组成,所以每个长方体的长为2,宽为1,高为8.设球的半径为,则.

故选:C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面四边形ABCD中, AB=2,BD=,AB⊥BC,∠BCD=2∠ABD,△ABD的面积为2.

(1)求AD的长;

(2)求△CBD的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线 )的焦点是椭圆 )的右焦点,且两曲线有公共点

1)求椭圆的方程;

2)椭圆的左、右顶点分别为 ,若过点且斜率不为零的直线与椭圆交于两点,已知直线相较于点,试判断点是否在一定直线上?若在,请求出定直线的方程;若不在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求的极值;

2)若,且,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了改善空气质量,某市规定,从201811日起,对二氧化碳排放量超过的轻型汽车进行惩罚性征税.检测单位对甲乙两品牌轻型汽车各抽取5辆进行二氧化碳排放量检测,记录如下:(单位:

80

110

120

140

150

100

120

100

160

经测算得乙品牌轻型汽车二氧化碳排放量的平均值为.

1)求表中的值,并比较甲乙两品牌轻型汽车二氧化碳排放量的稳定性;

2)从被检测的5辆甲品牌汽车中随机抽取2辆,求至少有1辆二氧化碳排放量超过的概率.(注:方差,其中的平均数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中:①若“”是“”的充要条件;

②若“”,则实数的取值范围是

③已知平面,直线,若,则

④函数的所有零点存在区间是.

其中正确的个数是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某运动员每次投篮命中的概率都是40%.现采用随机模拟的方法估计该运动员三次投篮恰有一次命中的概率:先由计算器产生09之间取整数值的随机数,指定1234表示命中,567890表示不命中;再以每三个随机数作为一组,代表三次投篮的结果.经随机模拟产生了如下20组随机数:907966191925271932812458569683431257393027556488730113537989.据此估计,该运动员三次投篮恰有两次命中的概率为(

A.0.25B.0.2C.0.35D.0.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系 中,曲线 的参数方程为 为参数),以坐标原点为极点, 轴正半轴为极轴建立极坐标系,直线 的极坐标方程为 .

1)求直线和曲线的普通方程;

2)已知点,且直线和曲线交于两点,求 的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在开展学习强国的活动中,某校高三数学教师成立了党员和非党员两个学习组,其中党员学习组有4名男教师、1名女教师,非党员学习组有2名男教师、2名女教师,高三数学组计划从两个学习组中随机各选2名教师参加学校的挑战答题比赛.

1)求选出的4名选手中恰好有一名女教师的选派方法数;

2)记X为选出的4名选手中女教师的人数,求X的概率分布和数学期望.

查看答案和解析>>

同步练习册答案