精英家教网 > 高中数学 > 题目详情

【题目】已知函数)的最小正周期是,将函数的图象向左平移个单位长度后所得的函数为,则函数的图象( )

A. 有一个对称中心 B. 有一条对称轴

C. 有一个对称中心 D. 有一条对称轴

【答案】B

【解析】函数(ω>0,0<φ<π)的最小正周期是

∴ω=2,f(x)=sin(2x﹣).

将函数f(x)的图象向左平移个单位长度后,

所得的图象对应函数为y=g(x)=sin(2x+)=sin(2x+),

令x=,求得g(x)=,故函数的图象不关于点(,0)对称,故排除A;

令x=,求得g(x)=1,故函数有一条对称轴x=,故B满足条件;

令x=,求得g(x)=,故函数的图象不关于点(,0)对称,故排除C.

令x=,求得g(x)=,故函数的图象不关于直线x=对称,故排除D,

故选:B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,底面ABCD是矩形,侧棱PD⊥底面ABCD,PD=DC,点E是PC的中点,作EF⊥PB交PB于点F.
(1)求证:PA∥平面BDE;
(2)求证:PB⊥平面DEF.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的五面体中,面为直角梯形, ,平面 平面 是边长为2的正三角形.

(1)证明:

(2)证明: 平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列结论: ①已知函数f(x)是定义在R上的奇函数,若f(﹣1)=2,f(﹣3)=﹣1,则f(3)<f(﹣1);
②函数y=log (x2﹣2x)的单调递增减区间是(﹣∞,0);
③已知函数f(x)是奇函数,当x≥0时,f(x)=x2 , 则当x<0时,f(x)=﹣x2
④若函数y=f(x)的图象与函数y=ex的图象关于直线y=x对称,则对任意实数x,y都有f(xy)=f(x)+f(y).
则正确结论的序号是(请将所有正确结论的序号填在横线上).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求函数f(x)=﹣x2+4x﹣6,x∈[0,5]的值域(
A.[﹣6,﹣2]
B.[﹣11,﹣2]
C.[﹣11,﹣6]
D.[﹣11,﹣1]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司对营销人员有如下规定:

①年销售额 (万元)在8万元以下,没有奖金;

②年销售额 (万元), 时,奖金为万元,且 ,且年销售额越大,奖金越多;

③年销售额超过64万元,按年销售额的10%发奖金.

(1)求奖金y关于x的函数解析式;

(2)若某营销人员争取奖金 (万元),则年销售额 (万元)在什么范围内?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为常数)的图象在处有公切线.

(Ⅰ)求实数的值;

(Ⅱ)求函数的极大值和极小值;

(Ⅲ)关于x的方程由几个不同的实数解?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四个命题:
(1)随机误差e是衡量预报精确度的一个量,它满足E(e)=0
(2)残差平方和越小的模型,拟合的效果越好;
(3)用相关指数R2来刻画回归的效果时,R2的值越小,说明模型拟合的效果越好;
(4)直线y=bx+a和各点(x1 , y1),(x2 , y2),…,(xn , yn)的偏差 是该坐标平面上所有直线与这些点的偏差中最小的直线.
其中真命题的个数( )
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)=ax2﹣(a+1)x+1
(1)解关于x的不等式f(x)>0;
(2)若对任意的a∈[﹣1,1],不等式f(x)>0恒成立,求x的取值范围.

查看答案和解析>>

同步练习册答案