精英家教网 > 高中数学 > 题目详情
已知定义在实数集R上的偶函数f(x)在区间[0,+∞)上是单调增函数,若f(lgx)<f(1),则实数x的取值范围是
 
分析:由f(x)是偶函数,通过f(-x)=f(x)=f(|x|),则不等式f(lgx)<f(1)转化为:f(|lgx|)<f(1),再由函数在区间[0,+∞)上是单调增函数列出不等式进行求解.
解答:解:∵f(x)定义在实数集R上的偶函数,在区间[0,+∞)上是单调增函数
∴f(x)中(-∞,0)上是减函数
又f(lgx)<f(1)
∴-1<lgx<1
1
10
<x<10

故答案为:
1
10
<x<10
点评:本题主要考查利用函数的奇偶性将变量转移到函数的单调区间上去,再利用函数单调性定义解不等式的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义在实数集R上的偶函数f(x)在区间[0,+∞)上是单调减函数,则不等式f(1)>f(log2x)的解集为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

23、已知定义在实数集R上的函数f(x),其导函数为f'(x),满足两个条件:①对任意实数x,y都有f(x+y)=f(x)+f(y)+2xy成立;②f'(0)=2.
(1)求函数的f(x)的表达式;
(2)对任意x1,x2∈[-1,1],求证:|f(x1)-f(x2)|≤4|x1-x2|.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在实数集R上的奇函数f(x),当x>0时,f(x)的图象是抛物线的一部分,且该抛物线经过点(1,0)、(3,0)和(0,3).
(1)求出f(x)的解析式;
(2)写出f(x)的单调区间;
(3)已知集合A={(x,y)|y=f(x)},B={(x,y)|y=t,x∈R,t∈R},若A∩B有4个元素,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在实数集R上的函数f(x)满足:(1)f(-x)=f(x);(2)f(4+x)=f(x);若当 x∈[0,2]时,f(x)=-x2+1,则当x∈[-6,-4]时,f(x)等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在实数集R上的函数f(x),同时满足以下三个条件:
①f(-1)=2;②x<0时,f(x)>1;③对任意实数x,y都有f(x+y)=f(x)f(y);
(1)求f(0),f(-4)的值; 
(2)判断函数f(x)的单调性,并求出不等式f(-4x2)f(10x)≥
116
的解集.

查看答案和解析>>

同步练习册答案