精英家教网 > 高中数学 > 题目详情

【题目】若椭圆的焦点在x轴上,离心率为,依次连接的四个顶点所得四边形的面积为40.

1)试求的标准方程;

2)若曲线M上任意一点到的右焦点的距离与它到直线的距离相等,直线经过的下顶点和右顶点,,直线与曲线M相交于点PQ(点P在第一象限内,点Q在第四象限内),设的下顶点是B,上顶点是D,且,求直线的方程.

【答案】(1);(2

【解析】

(1)根据条件列出关于的等式构建方程组求解出,即可求解出椭圆的标准方程;

(2)根据抛物线的定义可求的轨迹方程,利用直线联立的轨迹方程得到韦达定理形式,再根据三角形的面积比求解出直线的方程.

1)由题意可知:解得,∴所求的标准方程是

2)由(1)可知的右焦点是,下顶点,上顶点,右顶点是又由抛物线定义可知:曲线M是一条抛物线,M的焦点是

M的方程是,又

,∴,设直线的方程为

则联立方程组:,消去得:

,所以,所以

所以由韦达定理得:,又由可得,即:

∴联立方程组:,解得:,或

又∵点P在第一象限内,点Q在第四象限内,∴不合,舍去

∴所求直线的方程为,即:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆, 过点的直线与椭圆交于MN两点(M点在N点的上方),与轴交于点E.

(1)当时,求点MN的坐标;

(2)当时,设,求证:为定值,并求出该值;

(3)当时,点D和点F关于坐标原点对称,若△MNF的内切圆面积等于,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知公差不为零的等差数列{an}满足:a3+a820,且a5a2a14的等比中项.

1)求数列{an}的通项公式;

2)设数列{bn}满足,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数,若存在区间,使得,则称函数可等域函数,区间为函数的一个可等域区间”.给出下列四个函数:

;

;

;

.

其中存在唯一可等域区间可等域函数的序号是________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,OMON是两条海岸线,Q为海中一个小岛,A为海岸线OM上的一个码头.已知Q到海岸线OMON的距离分别为3 kmkm.现要在海岸线ON上再建一个码头,使得在水上旅游直线AB经过小岛Q

1)求水上旅游线AB的长;

2)若小岛正北方向距离小岛6 km处的海中有一个圆形强水波P,从水波生成t h时的半径为a为大于零的常数).强水波开始生成时,一游轮以km/h的速度自码头A开往码头B,问实数a在什么范围取值时,强水波不会波及游轮的航行.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆:的左右焦点分别为,左顶点为,点在椭圆上,且的面积为.

(1)求椭圆的方程;

(2)过原点且与轴不重合的直线交椭圆两点,直线分别与轴交于点,.求证:以为直径的圆恒过交点,并求出面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥S-ABCD中,四边形ABCD菱形,,平面平面 ABCD .EF 分别是线段 SCAB 上的一点, .

(1)求证:平面SAD;

(2)求平面DEF与平面SBC所成锐二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥PABCD中,底面ABCD是矩形,PA⊥底面ABCDPAAB1AD,点FPB的中点,点E在边BC上移动.

(1)EBC的中点时,试判断EF与平面PAC的位置关系,并说明理由;

(2)求证:无论点EBC边的何处,都有

(3)为何值时,与平面所成角的大小为45°.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在边长为的正方形中,线段BC的端点分别在边上滑动,且,现将分别沿ABAC折起使点重合,重合后记为点,得到三被锥.现有以下结论:

平面

②当分别为的中点时,三棱锥的外接球的表面积为

的取值范围为

④三棱锥体积的最大值为.

则正确的结论的个数为( )

A.B.C.D.

查看答案和解析>>

同步练习册答案