【题目】已知数列的前项和为,且,又数列满足: .
(1)求数列的通项公式;
(2)当为何值时,数列是等比数列?此时数列的前项和为,若存在,使m<成立,求的最大值.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= ,g(x)=x2+2mx+
(1)用定义法证明f(x)在R上是增函数;
(2)求出所有满足不等式f(2a﹣a2)+f(3)>0的实数a构成的集合;
(3)对任意的实数x1∈[﹣1,1],都存在一个实数x2∈[﹣1,1],使得f(x1)=g(x2),求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆: 经过椭圆: 的左右焦点,且与椭圆在第一象限的交点为,且三点共线,直线交椭圆于, 两点,且().
(1)求椭圆的方程;
(2)当三角形的面积取得最大值时,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知各项均为正数的等比数列{an}中,a2=4,a4=16.
(1)求公比q;
(2)若a3 , a5分别为等差数列{bn}的第3项和第5项,求数列{bn}的通项公式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列{an},a1=1,an+1= + ,数列{bn},bn=2n﹣1an .
(1)求证:数列{bn}为等差数列,并求出{bn}的通项公式;
(2)数列{an}的前n项和为Sn , 求Sn;
(3)正数数列{dn}满足 = .设数列{dn}的前n项和为Dn , 求不超过D100的最大整数的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在边长为2的正方体中,M是棱CC1的中点.
(1)求B到面的距离;
(2)求BC与面所成角的正切值;
(3)求面与面ABCD所成的锐二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知:以点为圆心的圆与x轴交于点O,A,与y轴交于点O,B,其中O为原点.
(1)求证:△OAB的面积为定值; (2)设直线y=-2x+4与圆C交于点M,N,若|OM|=|ON|,求圆C的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com