精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)讨论的单调性;

(2)若有两个极值点,且,证明:.

【答案】(1)见解析.(2)见解析.

【解析】分析:(1)先求导数,再根据二次方程 =0根得情况分类讨论:当时,.∴上单调递减. 当时,根据两根大小再分类讨论对应单调区间, (2)先化简不等式m,再利用导数研究单调性,得其最小值大于-1,即证得结果.

详解:(1)由,得

.

.

时,即时,.

上单调递减.

时,即时,

,得.

时,

上,,在上,

上单调递增,在上单调递减.

综上,当时,上单调递减,

时,上单调递减,在上单调递增,

时,上单调递增,在上单调递减.

(2)∵有两个极值点,且

∴由(1)知有两个不同的零点

,且,此时,

要证明,只要证明.

,∴只要证明成立.

,∴.

时,

上单调递增,

,即

有两个极值点,且时,.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】现有10道题,其中6道甲类题,4道乙类题,张同学从中任取3道题解答.

I求张同学至少取到1道乙类题的概率;

II已知所取的3道题中有2道甲类题,1道乙类题.设张同学答对甲类题的概率都是,答对每道乙类题的概率都是且各题答对与否相互独立.用表示张同学答对题的个数,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列五个正方体图形中,是正方体的一条对角线,点MNP分别为其所在棱的中点,求能得出MNP的图形的序号(写出所有符合要求的图形序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】当x∈R,|x|<1时,有如下表达式:1+x+x2+…+xn+…=
两边同时积分得: dx+ xdx+ x2dx+…+ xndx+…= dx
从而得到如下等式:1× + ×( 2+ ×( 3+…+ ×( n+1+…=ln2
请根据以上材料所蕴含的数学思想方法,计算:
× + ×( 2+ ×( 3+…+ ×( n+1=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某次测试中,卷面满分为100分,考生得分为整数,规定60分及以上为及格.某调研课题小组为了调查午休对考生复习效果的影响,对午休和不午休的考生进行了测试成绩的统计,数据如下表:

(1)根据上述表格完成下列列联表:

(2)判断“能否在犯错误的概率不超过0.010的前提下认为成绩及格与午休有关”?

(参考公式:,其中.)

0.010

0.05

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】写出下列命题的否定,并判断其真假:

(1)任何有理数都是实数;

(2)存在一个实数,能使成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某保险公司针对企业职工推出一款意外险产品,每年每人只要交少量保费,发生意外后可一次性获赔50万元.保险公司把职工从事的所有岗位共分为三类工种,根据历史数据统计出三类工种的每赔付频率如下表(并以此估计赔付概率).

(Ⅰ)根据规定,该产品各工种保单的期望利润都不得超过保费的20%,试分别确定各类工种每张保单保费的上限;

(Ⅱ)某企业共有职工20000人,从事三类工种的人数分布比例如图,老板准备为全体职工每人购买一份此种保险,并以(Ⅰ)中计算的各类保险上限购买,试估计保险公司在这宗交易中的期望利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱锥中,底面是矩形,平面,AB 1,AP AD 2.

(1)求直线与平面所成角的正弦值;

(2)若点M,N分别在AB,PC上,且平面,试确定点M,N的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为保障高考的公平性,高考时每个考点都要安装手机屏蔽仪,要求在考点周围1 km内不能收到手机信号,检查员抽查某市一考点,在考点正西约 km/h的的B处有一条北偏东60°方向的公路,在此处检查员用手机接通电话,以每小时12千米的速度沿公路行驶,最多需要多少时间,检查员开始收不到信号,并至少持续多长时间该考点才算合格?

查看答案和解析>>

同步练习册答案