精英家教网 > 高中数学 > 题目详情

【题目】围建一个面积为360的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m的进出口,如图所示,已知旧墙的维修费用为45/m,新墙的造价为180/m,设利用的旧墙的长度为(单位:),修建此矩形场地围墙的总费用为(单位:元)

1)将表示为的函数;

2)试确定,使修建此矩形场地围墙的总费用最小,并求出最小总费用。

【答案】1;(2)当x=24m时,修建围墙的总费用最小,最小总费用是10440.

【解析】试题分析:(1)设矩形的另一边长为am,则根据围建的矩形场地的面积为360m2,易得,此时再根据旧墙的维修费用为45/m,新墙的造价为180/m,我们即可得到修建围墙的总费用y表示成x的函数的解析式;(2)根据(1)中所得函数的解析式,利用基本不等式,我们易求出修建此矩形场地围墙的总费用最小值,及相应的x

试题解析:(1)如图,设矩形的另一边长为a m

45x+180x-2+180·2a=225x+360a-360

由已知xa=360,a=,

所以y=225x+

2

.当且仅当225x=时,等号成立.

即当x=24m时,修建围墙的总费用最小,最小总费用是10440元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了解今年某校高三毕业班想参军的学生体重情况,将所得的数据整理后,画出了频率分布直方图(如图).已知图中从左到右的前3个小组的频率之比为1:2:3,其中第2小组的频数为24.

)求该校高三毕业班想参军的学生人数;

)以这所学校的样本数据来估计全省的总体数据,若从全省高三毕业班想参军的同学中(人数很多)任选三人,设表示体重超过60公斤的学生人数,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为等边三角形,的中点.

(1)求

(2)求平面与平面所成二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,是边长为3的正方形,平面,且

1试在线段上确定一点的位置,使得平面

2求二面角的余弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高2010级数学培优学习小组有男生3人女生2人,这5人站成一排留影。

(1)求其中的甲乙两人必须相邻的站法有多少种?

(2)求其中的甲乙两人不相邻的站法有多少种?

(3)求甲不站最左端且乙不站最右端的站法有多少种 ?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数处取得极值.

(1)讨论是函数的极大值还是极小值;

(2)过点作曲线的切线,求此切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

1的单调区间

2为整数, 且当时,, 的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】迭代法是用于求方程或方程组近似根的一种常用的算法设计方法.设方程为用某种数学方法到处等价的形式然后按以下步骤执行

(1)选一个方程的近似根,赋给变量

(2)将的值保存于变量然后计算并将结果存于变量

(3)当的差的绝对值还小于指定的精度要求时重复步骤(2)的计算.若方程有根则按上述方法求得的就认为是方程的根试用迭代法求某个数的平方根用流程图和伪代码表示问题的算法

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种商品原来每件售价为25元,年销售8万件.

(1)据市场调查,若价格每提高1元,销售量将相应减少2000件,要使销售的总收入不低于原收入,该商品每件定价最多为多少元?

(2)为了扩大该商品的影响力,提高年销售量,公司决定明年对该商品进行全面技术革新和营销策略改革,并提高定价到元,公司拟投入万元作为技改费用,投入50万元作为固定宣传费用,投入作为浮动宣传费用.试问:当该商品明年的销售量至少应达到多少万件时,才可能使明年的销售收入不低于原收入与总投入之和?并求出此时商品的每件定价.

查看答案和解析>>

同步练习册答案