17£®ÒÑÖªÍÖÔ²$C£º\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1£¨a£¾b£¾0£©$µÄÀëÐÄÂÊΪ$\frac{3}{5}$£¬¹ý×ó½¹µãFÇÒ´¹Ö±ÓÚ³¤ÖáµÄÏÒ³¤Îª$\frac{32}{5}$£®
£¨1£©ÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨2£©µãP£¨m£¬0£©ÎªÍÖÔ²CµÄ³¤ÖáÉϵÄÒ»¸ö¶¯µã£¬¹ýµãPÇÒбÂÊΪ$\frac{4}{5}$µÄÖ±Ïßl½»ÍÖÔ²CÓÚA¡¢BÁ½µã£¬Ö¤Ã÷£º|PA|2+|PB|2Ϊ¶¨Öµ£®

·ÖÎö £¨1£©¸ù¾ÝÀëÐÄÂʼ°Í¨¾¶¹¹Ôì·½³Ì×飬ÇóµÃa£¬b£®
£¨2£©Ö±ÏßÓëÍÖÔ²ÁªÁ¢£¬¸ù¾ÝΤ´ï¶¨Àí£¬ÏÒ³¤¹«Ê½£¬²ÉÓÃÉè¶ø²»Ç󷨣¬Ö¤Ã÷|PA|2+|PB|2Ϊ¶¨Öµ£®

½â´ð ½â£º£¨1£©ÓÉÌâÒâ¿ÉµÃ·½³Ì×é$\left\{\begin{array}{l}{{e}^{2}=1-\frac{{b}^{2}}{{a}^{2}}}\\{\frac{2{b}^{2}}{a}=\frac{32}{5}}\end{array}\right.$ 
½âµÃ$\left\{\begin{array}{l}{a=5}\\{b=4}\end{array}\right.$
¹ÊÍÖÔ²±ê×¼·½³ÌΪ$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{16}=1$£®¡­£¨4·Ö£©
£¨2£©ÉèlµÄ·½³ÌΪ$x=\frac{5}{4}y+m$£¬´úÈë$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{16}=1$
²¢ÕûÀíµÃ£º25y2+20my+8£¨m2-25£©=0¡­£¨6·Ö£©
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Ôò${y}_{1}+{y}_{2}=-\frac{4}{5}m$£¬${y}_{1}{y}_{2}=\frac{8£¨{m}^{2}-25£©}{25}$£¬
ÓÖ¡ß$|PA{|}^{2}=£¨{x}_{1}-m£©^{2}+{{y}_{1}}^{2}$=$\frac{41}{16}{{y}_{1}}^{2}$£¬Í¬Àí$|PB{|}^{2}=\frac{41}{16}{{y}_{2}}^{2}$¡­£¨8·Ö£©
Ôò$|PA{|}^{2}+|PB{|}^{2}=\frac{41}{16}£¨{{y}_{1}}^{2}+{{y}_{2}}^{2}£©$
=$\frac{41}{16}$$[£¨{y}_{1}+{y}_{2}£©^{2}-2{y}_{1}{y}_{2}]$
=$\frac{41}{16}$$[£¨-\frac{4m}{5}£©^{2}-\frac{16£¨{m}^{2}-25£©}{25}]$
=41£®
ËùÒÔ|PA|2+|PB|2ÊǶ¨Öµ¡­£¨12·Ö£©

µãÆÀ ¿¼²éÁËÍÖÔ²±ê×¼·½³Ì£¬Ö±ÏßÓëÍÖԲλÖùØϵ£¬Ô²×¶ÇúÏßÖж¨µã¶¨ÖµÎÊÌ⣮¿¼²éÁËÇÉÉè·½³Ì£¬·½³Ì˼Ï룬Éè¶ø²»Ç󷨣®ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÒÑÖªº¯Êýf£¨x£©=|x2-2x-3|-aÂú×ãÏÂÁÐÌõ¼þ£¬ÇóaµÄÈ¡Öµ·¶Î§£®
£¨1£©º¯ÊýÓÐÁ½¸öÁãµã£»
£¨2£©º¯ÊýÓÐËĸöÁãµã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®µÈ±ÈÊýÁÐ{an}Âú×㣺a1+a6=11£¬a3a4=$\frac{32}{9}$£¬Ôòa1=$\frac{32}{3}»ò\frac{1}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÑÖªÏòÁ¿$\overrightarrow{a}$=£¨$\sqrt{3}$£¬1£©£¬$\overrightarrow{b}$=£¨cos¦Á£¬sin¦Á£©£¨¦Á¡ÊR£©
£¨I£©Èô¦Á=-$\frac{¦Ð}{6}$£¬ÊÔÓûùµ×$\overrightarrow{a}$£¬$\overrightarrow{b}$±íʾÏòÁ¿$\overrightarrow{c}$=£¨2$\sqrt{3}$£¬0£©£»
£¨II£©Èô$\overrightarrow{a}$¡Í$\overrightarrow{b}$£¬Çó¦ÁÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®Èçͼ£¬ÉèµãA£¬BµÄ×ø±ê·Ö±ðΪ£¨-$\sqrt{3}$£¬0£©£¬£¨$\sqrt{3}$£¬0£©£¬Ö±ÏßAP£¬BPÏཻÓÚµãP£¬ÇÒËüÃǵÄбÂÊÖ®»ýΪ-$\frac{2}{3}$£®
£¨1£©ÇóPµÄ¹ì¼£·½³Ì£»
£¨2£©ÉèµãPµÄ¹ì¼£ÎªC£¬µãM¡¢NÊǹ켣ΪCÉϲ»Í¬ÓÚA£¬BµÄÁ½µã£¬ÇÒÂú×ãAP¡ÎOM£¬BP¡ÎON£¬ÇóÖ¤£º¡÷MONµÄÃæ»ýΪ¶¨Öµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®Èçͼ£¬ÔÚ¾ØÐÎABCDÖУ¬AD=$\sqrt{5}$£¬AB=3£¬E¡¢F·Ö±ðΪAB±ß¡¢CD±ßÉÏÒ»µã£¬ÇÒAE=DF=l£¬ÏÖ½«¾ØÐÎABCDÑØEFÕÛÆð£¬Ê¹µÃƽÃæADFE¡ÍƽÃæBCFE£¬Á¬½ÓAB¡¢CD£¬ÔòËùµÃÈýÀâÖùABE-DCFµÄ²àÃæ»ý±ÈÔ­¾ØÐÎABCDµÄÃæ»ý´óÔ¼¶à£¨È¡$\sqrt{5}$¡Ö2.236£©£¨¡¡¡¡£©
A£®68%B£®70%C£®72%D£®75%

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®Ä³³ÌÐò¿òͼÈçͼËùʾ£¬ÈôÊäÈëÊä³öµÄn·Ö±ðΪ3ºÍ1£¬ÔòÔÚͼÖпհ׵ÄÅжϿòÖÐÓ¦ÌîÈëµÄÌõ¼þ¿ÉÒÔΪ£¨¡¡¡¡£©
A£®i¡Ý7£¿B£®i£¾7£¿C£®i¡Ý6£¿D£®i£¼6£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®É躯Êýf£¨x£©=$\left\{\begin{array}{l}{log_3}x£¬0£¼x¡Ü9\\ f£¨x-4£©£¬x£¾9\end{array}$Ôò$f£¨13£©+2f£¨\frac{1}{3}£©$µÄֵΪ£¨¡¡¡¡£©
A£®1B£®0C£®-2D£®2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®$\frac{sin11¡ã+cos75¡ãsin64¡ã}{cos11¡ã-sin75¡ãsin64¡ã}$=$2+\sqrt{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸