ÒÑÖªA1£¨x1£¬y1£©£¬A2£¨x2£¬y2£©£¬¡­£¬An£¨xn£¬yn£©ÊÇÖ±Ïßl£ºy=kx+bÉϵÄn¸ö²»Í¬µÄµã£¨n¡ÊN*£¬k¡¢b¾ùΪ·ÇÁã³£Êý£©£¬ÆäÖÐÊýÁÐ{xn}ΪµÈ²îÊýÁУ®
£¨1£©ÇóÖ¤£ºÊýÁÐ{yn}ÊǵȲîÊýÁУ»
£¨2£©ÈôµãPÊÇÖ±ÏßlÉÏÒ»µã£¬ÇÒ
OP
=a1
OA1
+a2
OA2
£¬ÇóÖ¤£ºa1+a2=1£»
£¨3£©Éèa1+a2+¡­+an=1£¬ÇÒµ±i+j=n+1ʱ£¬ºãÓÐai=aj£¨iºÍj¶¼ÊDz»´óÓÚnµÄÕýÕûÊý£¬ÇÒi¡Ùj£©£®ÊÔ̽Ë÷£ºÔÚÖ±ÏßlÉÏÊÇ·ñ´æÔÚÕâÑùµÄµãP£¬Ê¹µÃ
OP
=a1
OA1
+a2
OA2
+¡­+an
OAn
³ÉÁ¢£¿Çë˵Ã÷ÄãµÄÀíÓÉ£®
·ÖÎö£º£¨1£©½«yn+1ºÍyn·Ö±ð´úÈëy=kx+b£¬ÁîÁ½ÕßÏà¼õµÃ¶¨Öµ£¬±ã¿ÉÖ¤Ã÷ÊýÁÐ{yn}ΪµÈ²îÊýÁУ»
£¨2£©ÓÉÌâÖÐÌõ¼þ¿ÉÖªPA1A2¹²Ïߣ¬Áî
A1P
=¦Ë 
PA2
£¬¼´¿ÉÖ¤Ã÷a1+a2=1£»
£¨3£©ÏÈд³öÂú×ãÌõ¼þµÄxµÄº¯Êý£¬ÔÙ¸ù¾Ýa1+a2+¡­+an=1ºÍai=aj¼°ÊýÁÐ{xn}ΪµÈ²îÊýÁеÈÌõ¼þÖð²½»¯¼ò£¬±ã¿ÉÇó³öÂú×ãÌõ¼þµÄPµê×ø±ê£®
½â´ð£º½â£º£¨1£©Ö¤£ºÉèµÈ²îÊýÁÐ{xn}µÄ¹«²îΪd£¬
¡ßyn+1-yn=£¨kxn+1+b£©-£¨kxn+b£©=k£¨xn+1-xn£©=kd£¬
¡àyn+1-ynΪ¶¨Öµ£¬¼´ÊýÁÐ{yn}ÊǵȲîÊýÁУ»
£¨2£©Ö¤£ºÒòΪP¡¢A1ºÍA2¶¼ÊÇÖ±ÏßlÉÏÒ»µã£¬¹ÊÓÐ
A1P
=¦Ë 
PA2
£¨¦Ë¡Ù-1£©£¬
ÓÚÊÇ£¬
OP
=
OA1
+
A1P
=
OA1
+¦Ë
PA2
=
OA1
+¦Ë£¨
OA2
-
OP
£©£¬
¡à£¨1+¦Ë£©
OP
=
OA1
+¦Ë
OA2

¡à
OP
=
1
1+¦Ë
OA1
+
¦Ë
1+¦Ë
OA2
£¬
Áîa1=
1
1+¦Ë
£¬a2=
¦Ë
1+¦Ë
£¬ÔòÓÐa1+a2=1£»
£¨3£©¼ÙÉè´æÔÚµãP£¨x£¬y£©£¬Âú×ãÒªÇó
OP
=a1
OA1
+a2
OA2
+¡­+an
OAn
£¬
ÔòÓÐx=a1x1+a2x2+a3x3+¡­+anxn£¬
ÓÖµ±i+j=n+1ʱ£¬ºãÓÐai=aj£¬
ÔòÓÖÓÐx=anx1+an-1x2+¡­+a2xn-1+a1xn£¬
¡à2x=a1£¨x1+xn£©+a2£¨x2+xn-1£©+a3£¨x3+xn-2£©+¡­+an£¨xn+x1£©£¬
ÓÖ¡ßÊýÁÐ{xn}ΪµÈ²îÊýÁУ»
ÓÚÊÇx1+xn=x2+xn-1=x3+xn-2=¡­=xn+x1
¡à2x=£¨a1+a2+a3+¡­+an£©£¨x1+xn£©=x1+xn
¹Êx=
x1 +xn
2
£¬Í¬Àíy=
y1yn
2
£¬
ÇÒµãP£¨
x1 +xn
2
£¬
y1yn
2
£©ÔÚÖ±ÏßÉÏ£¨ÊÇA1¡¢AnµÄÖе㣩£¬
¼´´æÔÚµãP£¨
x1 +xn
2
£¬
y1yn
2
£©Âú×ãÒªÇó£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÁ˵ȲîÊýÁÐÓëÏòÁ¿µÄ×ÛºÏÔËÓã¬ÊǸ÷µØ¸ß¿¼µÄÈȵ㣬×ÛºÏÐÔ½ÏÇ¿£¬¿¼²éÁËѧÉú¶Ô֪ʶµÄ×ÛºÏÔËÓúÍÈ«ÃæÕÆÎÕ£¬Æ½³£Ó¦¶à¼ÓѵÁ·£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ƽÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªA1£¨x1£¬y1£©£¬A2£¨x2£¬y2£©£¬¡­£¬An£¨xn£¬yn£©ÊÇÖ±Ïßl£ºy=kx+bÉϵÄn¸öµã
£¨n¡ÊN*£¬k¡¢b¾ùΪ·ÇÁã³£Êý£©£®
£¨1£©ÈôÊýÁÐ{xn}³ÉµÈ²îÊýÁУ¬ÇóÖ¤£ºÊýÁÐ{yn}Ò²³ÉµÈ²îÊýÁУ»
£¨2£©ÈôµãPÊÇÖ±ÏßlÉÏÒ»µã£¬ÇÒ
OP
=a1
OA1
+a2
OA2
£¬Çóa1+a2µÄÖµ£»
£¨3£©ÈôµãPÂú×ã
OP
=a1
OA1
+a2
OA2
+¡­+an
OAn
£¬ÎÒÃdzÆ
OP
ÊÇÏòÁ¿
OA1
£¬
OA2
£¬¡­£¬
OAn
µÄÏßÐÔ×éºÏ£¬{an}ÊǸÃÏßÐÔ×éºÏµÄϵÊýÊýÁУ®µ±
OP
ÊÇÏòÁ¿
OA1
£¬
OA2
£¬¡­£¬
OAn
µÄÏßÐÔ×éºÏʱ£¬Çë²Î¿¼ÒÔÏÂÏßË÷£º
¢ÙϵÊýÊýÁÐ{an}ÐèÂú×ãÔõÑùµÄÌõ¼þ£¬µãP»áÂäÔÚÖ±ÏßlÉÏ£¿
¢ÚÈôµãPÂäÔÚÖ±ÏßlÉÏ£¬ÏµÊýÊýÁÐ{an}»áÂú×ãÔõÑùµÄ½áÂÛ£¿
¢ÛÄÜ·ñ¸ù¾ÝÄã¸ø³öµÄϵÊýÊýÁÐ{an}Âú×ãµÄÌõ¼þ£¬È·¶¨ÔÚÖ±ÏßlÉϵĵãPµÄ¸öÊý»ò×ø±ê£¿
ÊÔÌá³öÒ»¸öÏà¹ØÃüÌ⣨»ò²ÂÏ룩²¢¿ªÕ¹Ñо¿£¬Ð´³öÄãµÄÑо¿¹ý³Ì£®[±¾Ð¡Ì⽫¸ù¾ÝÄãÌá³öµÄÃüÌ⣨»ò²ÂÏ룩µÄÍ걸³Ì¶ÈºÍÑо¿¹ý³ÌÖÐÌåÏÖµÄ˼ά²ã´Î£¬¸øÓ費ͬµÄÆÀ·Ö]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

ƽÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªA1£¨x1£¬y1£©£¬A2£¨x2£¬y2£©£¬¡­£¬An£¨xn£¬yn£©ÊÇÖ±Ïßl£ºy=kx+bÉϵÄn¸öµã
£¨n¡ÊN*£¬k¡¢b¾ùΪ·ÇÁã³£Êý£©£®
£¨1£©ÈôÊýÁÐ{xn}³ÉµÈ²îÊýÁУ¬ÇóÖ¤£ºÊýÁÐ{yn}Ò²³ÉµÈ²îÊýÁУ»
£¨2£©ÈôµãPÊÇÖ±ÏßlÉÏÒ»µã£¬ÇÒÊýѧ¹«Ê½£¬Çóa1+a2µÄÖµ£»
£¨3£©ÈôµãPÂú×ãÊýѧ¹«Ê½£¬ÎÒÃdzÆÊýѧ¹«Ê½ÊÇÏòÁ¿Êýѧ¹«Ê½£¬Êýѧ¹«Ê½£¬¡­£¬Êýѧ¹«Ê½µÄÏßÐÔ×éºÏ£¬{an}ÊǸÃÏßÐÔ×éºÏµÄϵÊýÊýÁУ®µ±Êýѧ¹«Ê½ÊÇÏòÁ¿Êýѧ¹«Ê½£¬Êýѧ¹«Ê½£¬¡­£¬Êýѧ¹«Ê½µÄÏßÐÔ×éºÏʱ£¬Çë²Î¿¼ÒÔÏÂÏßË÷£º
¢ÙϵÊýÊýÁÐ{an}ÐèÂú×ãÔõÑùµÄÌõ¼þ£¬µãP»áÂäÔÚÖ±ÏßlÉÏ£¿
¢ÚÈôµãPÂäÔÚÖ±ÏßlÉÏ£¬ÏµÊýÊýÁÐ{an}»áÂú×ãÔõÑùµÄ½áÂÛ£¿
¢ÛÄÜ·ñ¸ù¾ÝÄã¸ø³öµÄϵÊýÊýÁÐ{an}Âú×ãµÄÌõ¼þ£¬È·¶¨ÔÚÖ±ÏßlÉϵĵãPµÄ¸öÊý»ò×ø±ê£¿
ÊÔÌá³öÒ»¸öÏà¹ØÃüÌ⣨»ò²ÂÏ룩²¢¿ªÕ¹Ñо¿£¬Ð´³öÄãµÄÑо¿¹ý³Ì£®[±¾Ð¡Ì⽫¸ù¾ÝÄãÌá³öµÄÃüÌ⣨»ò²ÂÏ룩µÄÍ걸³Ì¶ÈºÍÑо¿¹ý³ÌÖÐÌåÏÖµÄ˼ά²ã´Î£¬¸øÓ費ͬµÄÆÀ·Ö]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2011ÄêÉϺ£ÊÐÆÕÍÓÇø¸ß¿¼ÊýѧһģÊÔ¾í£¨Àí¿Æ£©£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

ƽÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªA1£¨x1£¬y1£©£¬A2£¨x2£¬y2£©£¬¡­£¬An£¨xn£¬yn£©ÊÇÖ±Ïßl£ºy=kx+bÉϵÄn¸öµã
£¨n¡ÊN*£¬k¡¢b¾ùΪ·ÇÁã³£Êý£©£®
£¨1£©ÈôÊýÁÐ{xn}³ÉµÈ²îÊýÁУ¬ÇóÖ¤£ºÊýÁÐ{yn}Ò²³ÉµÈ²îÊýÁУ»
£¨2£©ÈôµãPÊÇÖ±ÏßlÉÏÒ»µã£¬ÇÒ£¬Çóa1+a2µÄÖµ£»
£¨3£©ÈôµãPÂú×㣬ÎÒÃdzÆÊÇÏòÁ¿£¬£¬¡­£¬µÄÏßÐÔ×éºÏ£¬{an}ÊǸÃÏßÐÔ×éºÏµÄϵÊýÊýÁУ®µ±ÊÇÏòÁ¿£¬£¬¡­£¬µÄÏßÐÔ×éºÏʱ£¬Çë²Î¿¼ÒÔÏÂÏßË÷£º
¢ÙϵÊýÊýÁÐ{an}ÐèÂú×ãÔõÑùµÄÌõ¼þ£¬µãP»áÂäÔÚÖ±ÏßlÉÏ£¿
¢ÚÈôµãPÂäÔÚÖ±ÏßlÉÏ£¬ÏµÊýÊýÁÐ{an}»áÂú×ãÔõÑùµÄ½áÂÛ£¿
¢ÛÄÜ·ñ¸ù¾ÝÄã¸ø³öµÄϵÊýÊýÁÐ{an}Âú×ãµÄÌõ¼þ£¬È·¶¨ÔÚÖ±ÏßlÉϵĵãPµÄ¸öÊý»ò×ø±ê£¿
ÊÔÌá³öÒ»¸öÏà¹ØÃüÌ⣨»ò²ÂÏ룩²¢¿ªÕ¹Ñо¿£¬Ð´³öÄãµÄÑо¿¹ý³Ì£®[±¾Ð¡Ì⽫¸ù¾ÝÄãÌá³öµÄÃüÌ⣨»ò²ÂÏ룩µÄÍ걸³Ì¶ÈºÍÑо¿¹ý³ÌÖÐÌåÏÖµÄ˼ά²ã´Î£¬¸øÓ費ͬµÄÆÀ·Ö]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2011ÄêÉϺ£ÊÐÆÕÍÓÇø¸ß¿¼ÊýѧһģÊÔ¾í£¨ÎÄ¿Æ£©£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

ÒÑÖªA1£¨x1£¬y1£©£¬A2£¨x2£¬y2£©£¬¡­£¬An£¨xn£¬yn£©ÊÇÖ±Ïßl£ºy=kx+bÉϵÄn¸ö²»Í¬µÄµã£¨n¡ÊN*£¬k¡¢b¾ùΪ·ÇÁã³£Êý£©£¬ÆäÖÐÊýÁÐ{xn}ΪµÈ²îÊýÁУ®
£¨1£©ÇóÖ¤£ºÊýÁÐ{yn}ÊǵȲîÊýÁУ»
£¨2£©ÈôµãPÊÇÖ±ÏßlÉÏÒ»µã£¬ÇÒ£¬ÇóÖ¤£ºa1+a2=1£»
£¨3£©Éèa1+a2+¡­+an=1£¬ÇÒµ±i+j=n+1ʱ£¬ºãÓÐai=aj£¨iºÍj¶¼ÊDz»´óÓÚnµÄÕýÕûÊý£¬ÇÒi¡Ùj£©£®ÊÔ̽Ë÷£ºÔÚÖ±ÏßlÉÏÊÇ·ñ´æÔÚÕâÑùµÄµãP£¬Ê¹µÃ³ÉÁ¢£¿Çë˵Ã÷ÄãµÄÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸