精英家教网 > 高中数学 > 题目详情

【题目】如图,在三棱柱中,点P,G分别是的中点,已知⊥平面ABC,==3,==2.

(I)求异面直线AB所成角的余弦值;

(II)求证:⊥平面

(III)求直线与平面所成角的正弦值.

【答案】见解析(Ⅲ

【解析】分析由题意得AB,故∠G是异面直线AB所成的角,解三角形可得所求余弦值.在三棱柱中,由⊥平面ABC可得A1G,于是A1G,A1G,根据线面垂直的判定定理可得结论成立.(Ⅲ的中点H,连接AH,HG;HG的中点O,连接OP,PO//A1G可得平面

故得∠PC1OPC1与平面所成的角,然后解三角形可得所求.

详解:

(I)AB,

∴∠G是异面直线AB所成的角.

==2,GBC的中点,

A1GB1C1

即异面直线AGAB所成角的余炫值为

(II)在三棱柱中,

⊥平面ABC,平面ABC,

A1G,

A1G,

A1G

平面

(III)解:取的中点H,连接AH,HG;HG的中点O,连接OP,

PO//A1G,

平面

∴∠PC1OPC1与平面所成的角.

由已知得,

∴直线与平面所成角的正弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】数学家欧拉在1765年发现,任意三角形的外心、重心、垂心位于同一条直线上,这条直线称为欧拉线已知的顶点,若其欧拉线的方程为,则顶点的坐标为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和为Sn , 已知2Sn=3n+1+2n﹣3.
(1)求数列{an}的通项公式;
(2)求数列{nan}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】把直线向左平移个单位,再向下平移个单位后,所得直线正好与圆相切,则实数的值为____________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|ω|< )的部分图象如图所示,下列说法正确的是(

A.函数f(x)的最小正周期为2π
B.函数f(x)的图象关于点(﹣ ,0)对称
C.将函数f(x)的图象向左平移 个单位得到的函数图象关于y轴对称
D.函数f(x)的单调递增区间是[kπ+ ,kπ+ ](K∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若直线axby—4=0和圆x2y2=4没有公共点,则过点(ab)的直线与椭圆=1的公共点个数为(  )

A. 0 B. 1 C. 2 D. ab的取值来确定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一动圆与定圆外切,同时和圆内切,定点A(1,1).

(1)求动圆圆心P的轨迹E的方程,并说明是何种曲线;

(2)ME上任意一点, FE的左焦点,试求的最小值;

(3)试求的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知多面体均垂直于平面

(1)证明:⊥平面

(2)求直线与平面所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三角形ABC和梯形ACEF所在的平面互相垂直,AB⊥BC,AF⊥AC,AF 2CE,G是线段BF上一点,AB=AF=BC=2.

(1)当GB=GF时,求证:EG∥平面ABC;
(2)求二面角E﹣BF﹣A的余弦值;
(3)是否存在点G满足BF⊥平面AEG?并说明理由.

查看答案和解析>>

同步练习册答案