精英家教网 > 高中数学 > 题目详情
如图所示,已知P是⊙O外一点,PD为⊙O的切线,D为切点,割线PEF经过圆心O,若PF=12,PD=4,则∠EFD的度数为________.
30°.
由切割线定理,得PD2PE·PFPE=4,
EF=8,OD=4.
ODPDODPO,∴∠P=30°.
∴∠POD=60°,∠EFDPOD=30°.故填30°.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图所示,已知圆O外有一点P,作圆O的切线PM,M为切点,过PM的中点N,作割线NAB,交圆于A、B两点,连接PA并延长,交圆O于点C,连接PB交圆O于点D,若MC=BC.

(1)求证:△APM∽△ABP;
(2)求证:四边形PMCD是平行四边形.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,AB为⊙O的直径,直线CD与⊙O相切于EAD垂直CDDBC垂直CDCEF垂直ABF,连接AEBE.证明:
 
(1)∠FEB=∠CEB
(2)EF2AD·BC.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,PA、PB是圆O的两条切线,A、B是切点,C是劣弧AB(不包括端点)上一点,直线PC交圆O于另一点D,Q在弦CD上,且求证:

(1);(2)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,已知PA与⊙O相切,A为切点,PBC为割线,CD∥AP,AD与BC相交于点E,F为CE上一点,且DE2=EF·EC.

(1)求证:∠P=∠EDF;
(2)求证:CE·EB=EF·EP;
(3)若CE∶BE=3∶2,DE=6,EF=4,求PA的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,在△ABC中,I为△ABC的内心,AI交BC于D,交△ABC外接圆于E.

求证:(1)IE=EC;
(2)IE2=ED·EA.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,梯形ABCD中,AD∥BC,EF是中位线,BD交EF于P,已知EP∶PF=1∶2,AD=7cm,求BC的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,过点P的直线与⊙O相交于AB两点.若PA=1,AB=2,PO=3,则⊙O的半径等于________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图所示,PA、PB是⊙O的两条切线,A、B为切点,直线OP交⊙O于点D、E,交AB于点C,图中互相垂直的线段有________⊥________.(只要求写出一对线段)

查看答案和解析>>

同步练习册答案