【题目】某企业拟用10万元投资甲、乙两种商品.已知各投入万元,甲、乙两种商品分别可获得万元的利润,利润曲线,,如图所示.
(1)求函数的解析式;
(2)应怎样分配投资资金,才能使投资获得的利润最大?
【答案】(1),;(2)当投资甲商品6.25万元,乙商品3.75万元时,所获得的利润最大值为万元.
【解析】
试题(1)由图可知,点在曲线上,将两点的坐标代入曲线的方程,列方程组可求得.同理在曲线上,将其代入曲线的方程可求得.(2)设投资甲商品万元,乙商品万元,则利润表达式为,利用换元法和配方法,可求得当投资甲商品万元,乙商品万元时,所获得的利润最大值为万元.
试题解析:
(1)由题知,在曲线上,
则,
解得,即.
又在曲线上,且,则,
则,所以.
(2)设甲投资万元,则乙投资为万元,
投资获得的利润为万元,则
,
令,
则.
当,即(万元)时,利润最大为万元,此时(万元),
答:当投资甲商品6.25万元,乙商品3.75万元时,所获得的利润最大值为万元.
科目:高中数学 来源: 题型:
【题目】已知抛物线过点,其焦点为,且.
(1)求抛物线的方程;
(2)设为轴上异于原点的任意一点,过点作不经过原点的两条直线分别与抛物线和圆相切,切点分别为,求证:三点共线.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在四棱锥P-ABCD中,底面ABCD是矩形,且,,平面ABCD,E,F分别是线段AB、BC的中点.
(1)证明:;
(2)点G在线段PA上,且平面PFD,求
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现采用随机模拟的方法估计某运动员射击4次,至少击中3次的概率;先由计算器给出0到9之间取整数值的随机数,指定0、1、2表示没有击中目标,3、4、5、6、7、8、9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了20组随机数 :
7527 0293 7140 9857 0347 4373 8636 6947 1417 4698
0371 6233 2616 8045 6011 3661 9597 7424 7610 4281
根据以上数据估计该射击运动员射击4次至少击中3次的概率为( )
A. 0.55B. 0.6C. 0.65D. 0.7
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某班共有学生45人,其中女生18人,现用分层抽样的方法,从男、女学生中各抽取若干学生进行演讲比赛,有关数据见下表(单位:人)
性别 | 学生人数 | 抽取人数 |
女生 | 18 | |
男生 | 3 |
(1)求和;
(2)若从抽取的学生中再选2人做专题演讲,求这2人都是男生的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线C的参数方程为为参数.在以原点为极点,为参数).在以原点为极点,轴的正半轴为极轴的极坐标系中,直线的极坐标方程为.
(Ⅰ)求曲线C的普通方程和直线的直角坐标方程;
(Ⅱ)设,直线与曲线C交于M,N两点,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com