精英家教网 > 高中数学 > 题目详情
(2007•烟台三模)设a<0,两直线x-a2y+1=0与(a2+1)x+by+3=0垂直,则ab的最大值为(  )
分析:由直线x-a2y+1=0与(a2+1)x+by+3=0互相垂直,结合两直线垂直,两斜率积为-1,我们易得到a,b的关系,结合基本不等式即可求出ab的范围.
解答:解:∵直线x-a2y+1=0与直线(a2+1)x+by+3=0互相垂直
1
a2
×(-
a2+1
b
)
=-1
∴b=
a2+1
a2

∵a<0
ab=a•
a2+1
a2
=a+
1
a
=-[-a+(-
1
a
)]≤-2
∴ab的最大值是-2.
故选:A.
点评:本题考查的知识点是直线的一般方程与直线垂直的关系,基本不等式在最值问题中的应用,其中利用两直线垂直,两斜率积为-1,我们易得到a,b的关系,是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2007•烟台三模)在等差数列{an}和等比数列{bn}的首项均为1,且公差d>0,公比q>1,则集合{n|an=bn}(n∈N+)中的元素最多有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•烟台三模)一个多面体的直观图(正视图、侧视图,俯视图)如图所示,M,N分别为A1B,B1C1的中点.
(1)求证:MN∥平面ACC1A1
(2)求证:MN⊥平面A1BC;
(3)求二面角A-A1B-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•烟台三模)复数Z1=a+2i,Z2=-2+i,如果|Z1|<|Z2|,则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•烟台三模)对于线性相关系数r,以下说法正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•烟台三模)若f(x)=ax(a>0且a≠1)的反函数g(x)满足:g(
1
2
)<0,则函数f(x)的图象向左平移一个单位后的图象大致是下图中的(  )

查看答案和解析>>

同步练习册答案