【题目】如图,四边形中,,,,,,分别在,上,,现将四边形沿折起,使平面平面.
(Ⅰ)若,在折叠后的线段上是否存在一点,且,使得平面?若存在,求出的值;若不存在,说明理由;
(Ⅱ)当三棱锥的体积最大时,求二面角的余弦值.
【答案】(Ⅰ)在存在一点,且,使平面.
(Ⅱ).
【解析】试题分析:(Ⅰ)折叠后,连结,得,进而得平面,再由,,得到平面平面,进而得平面,即可得到结论;
(Ⅱ)根据题意得时,取是最大值,再由(Ⅰ)可以为原点,以,,所在直线分别为轴,轴,轴建立空间直角坐标系,求得平面和的的法向量,利用向量的夹角公式即可求解二面角的余弦值.
试题解析:
(Ⅰ)在折叠后的图中过作,交于,过作交于,连结,在四边形中,,,所以.
折起后,,
又平面平面,平面平面,所以平面.
又平面,所以,所以,,,
因为,,所以平面平面,因为平面,所以平面.
所以在存在一点,且,使平面.
(Ⅱ)设,所以,,
故
所以当时,取是最大值.
由(Ⅰ)可以为原点,以,,所在直线分别为轴,轴,轴建立空间直角坐标系,则
,,,,所以,,,,设平面的法向量,
则即
令,则,,则,
设平面的法向量,
则即
令,则,,则
所以.
所以二面角的余弦值为
科目:高中数学 来源: 题型:
【题目】从1到7的7个数字中取两个偶数和三个奇数组成没有重复数字的五位数.
试问:(1)能组成多少个不同的五位偶数?
(2)五位数中,两个偶数排在一起的有几个?
(3)两个偶数不相邻且三个奇数也不相邻的五位数有几个?(所有结果均用数值表示)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】玉山一中篮球体育测试要求学生完成“立定投篮”和“三步上篮”两项测试,“立定投篮”和“三步上篮”各有2次投篮机会,先进行“立定投篮”测试,如果合格才能参加“三步上篮”测试.为了节约时间,每项测试只需且必须投中一次即为合格.小华同学“立定投篮”和“三步上篮”的命中率均为.假设小华不放弃任何一次投篮机会且每次投篮是否命中相互独立.
(1)求小华同学两项测试均合格的概率;
(2)设测试过程中小华投篮次数为X,求随机变量X的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在中,,分别为,的中点,,如图1.以为折痕将折起,使点到达点的位置,如图2.
如图1 如图2
(1)证明:平面平面;
(2)若平面平面,求直线与平面所成角的正弦值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数y=f(x)是定义域为R的偶函数.当x≥0时,,若关于x的方程[f(x)]2+af(x)+b=0,a,b∈R有且仅有6个不同实数根,则实数a的取值范围是( )
A. B.
C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题正确的是( )
A. 命题的否定是:
B. 命题中,若,则的否命题是真命题
C. 如果为真命题,为假命题,则为真命题,为假命题
D. 是函数的最小正周期为的充分不必要条件
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的焦点与双曲线的焦点重合,过椭圆的右顶点任意作直线,交抛物线于,两点,且,其中为坐标原点.
(1)试求椭圆的方程;
(2)过椭圆的左焦点作互相垂直的两条直线,分别交椭圆于点、、、,试求四边形的面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)当时,
①若曲线与直线相切,求的值;
②若曲线与直线有公共点,求的取值范围.
(2)当时,不等式对于任意正实数恒成立,当取得最大值时,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com