精英家教网 > 高中数学 > 题目详情
5.为调查了解某高等院校毕业生参加T作后,从事的T作与大学所学专业是否专业对口,该校随机调查了80位该校2015年毕业的大学生,得到具体数据如表:
专业对口专业不对口合计
301040
35540
合计651580
(1)能否在犯错误的概率不超过5%的前提下,认为“毕业生从事的工作与大学所学专业对口与性别有关”?
参考公式:k2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$(n=a+b+c+d).
附表:
P(K)0.500.400.250.150.100.050.0250.010
0.4550.7081.3232.0722.3063.8415.0216.635
(2)求这80位毕业生从事的工作与大学所学专业对口的频率,并估计该校近3年毕业的2000名大学生中从事的工作与大学所学专业对口的人数;
(3)若从工作与所学专业不对口的15人中选出男生甲、乙,女生丙、丁,让他们两两进行一次10分钟的职业交流,该校宣传部对每次交流都一一进行视频记录,然后随机选取一次交流视频上传到学校的网站,试求选取的视频恰为异性交流视频的概率.

分析 (1)利用公式,求出k2,与临界值比较,即可得出结论;
(2)这80位毕业生从事的工作与大学所学专业对口的频率=$\frac{65}{80}$=$\frac{13}{16}$,即可得出结论;
(3)利用列举法确定基本事件,再求出概率.

解答 解:(1)由题意,k2=$\frac{80(30×5-35×10)^{2}}{80×40×65×15}$≈2.051<3.841,
∴不能在犯错误的概率不超过5%的前提下,认为“毕业生从事的工作与大学所学专业对口与性别有关”;
(2)这80位毕业生从事的工作与大学所学专业对口的频率=$\frac{65}{80}$=$\frac{13}{16}$,由此估计该校近3年毕业的2000名大学生中从事的工作与大学所学专业对口的人数为$\frac{13}{16}$×2000=1625;
(3)两两进行一次10分钟的职业交流的所有结果为(甲乙),(甲丙),(甲丁),(乙丙),(乙丁),(丙丁),6个基本事件,其中异性交流有4个基本事件,故概率为$\frac{4}{6}$=$\frac{2}{3}$.

点评 本题考查独立性检验知识的运用,考查概率的计算,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)的图象是由函数g(x)=cosx的图象经如下变换得到:现将g(x)图象上所有点的纵坐标伸长到原来的2倍,(横坐标不变),再讲所得的图象向右平移$\frac{π}{2}$个单位长度.
(1)求函数f(x)的解析式,并求其图象的对称轴的方程;
(2)已知关于x的方程f(x)+g(x)=m在[0,2π]内有两个不同的解α,β,
①求实数m的取值范围.
②证明:cos(α-β)=$\frac{2{m}^{2}}{5}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.“微信运动”已成为当下热门的健身方式,小王的微信朋友圈内也有大量好友参与了“微信运动”,他随机选取了其中的40人(男、女各20人),记录了他们某一天的走路步数,并将数据整理如下:
步数
性别
0~20002001~50005001~80008001~10000>10000
12368
021062
(1)若采用样本估计总体的方式,试估计小王的所有微信好友中每日走路步数超过5000步的概率;
(2)已知某人一天的走路步数超过8000步被系统评定“积极型”,否则为“懈怠型”,根据题意完成下面的2×2列联表,并据此判断能否有95%以上的把握认为“评定类型”与“性别”有关?
积极型懈怠型总计
14822
61218
总计202040
附:${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,
P(K2≥k00.100.050.0250.010
k02.7063.8415.0246.635

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数y=f(x+1)的定义域为[-1,2],则函数y=f (x)的定义域为(  )
A.[-1,2]B.[0,2]C.[-1,3]D.[0,3]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知曲线C的极坐标方程为ρ-4cosθ=0,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l过点M(1,0),倾斜角为$\frac{π}{6}$.
(1)求曲线C的直角坐标方程与直线l的标准参数方程;
(2)设直线l与曲线C交于A,B两点,求|MA|+|MB|.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.阅读下列程序,输出的结果为22.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知以抛物线x2=2py,(p>0)的顶点和焦点之间的距离为直径的圆的面积为4π,过点(-1,0)的直线L与抛物线只有一个公共点,则焦点到直线L的距离为1或4或$\sqrt{17}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.某医疗研究所为了检验某种血清预防感冒的作用,把500名使用血清的人与另外500名未用血清的人一年中的感冒记录作比较,提出假设H0:“这种血清不能起到预防感冒的作用”,利用2×2列联表计算得K2≈3.918,经查对临界值表知P(K2≥3.841)≈0.05,对此,四名同学作出了以下的判断:
p:有95%的把握认为“能起到预防感冒的作用”;
q:如果某人未使用该血清,那么他在一年中有95%的可能性得感冒:
r:这种血清预防感冒的有效率为95%;
s:这种血清预防感冒的有效率为5%.
则下列结论中,正确结论的序号是(1)(4).
(1)p∧¬q;(2)¬p∧q;(3)r∨s;(4)p∧¬r.

查看答案和解析>>

同步练习册答案