精英家教网 > 高中数学 > 题目详情

【题目】已知f(x)=ax﹣lnx,x∈(0,e],其中e是自然常数,a∈R.
(1)当a=1时,求f(x)的单调区间和极值;
(2)是否存在实数a,使f(x)的最小值是3,若存在,求出a的值;若不存在,说明理由.
(3)证明:(1﹣ )( )( )…( )<e33n

【答案】
(1)解:因为f(x)=x﹣lnx,f′(x)=1﹣ =

所以当0<x<1时,f'(x)<0,此时函数f(x)单调递减,

当1<x≤e时,f'(x)>0,此时函数f(x)单调递增,

所以函数f(x)的极小值为f(1)=1


(2)解:假设存在实数a,使f(x)=ax﹣lnx,x∈(0,e],有最小值3,

则f′(x)=a﹣ =

① 当a≤0时,f'(x)<0,f(x)在(0,e]上单调递减,

f(x)min=f(e)=ae﹣1=3,a= ,(舍去),此时函数f(x)的最小值不是3.

②当0< <e时,f(x)在(0, ]上单调递减,f(x)在( ,e]上单调递增.

所以f(x)min=f( )=1+lna=3,a=e2,满足条件.

③当 ≥e时,f(x)在(0,e]上单调递减,f(x)min=f(e)=ae﹣1=3,a= ,(舍去),

此时函数f(x)的最小值是不是3,

综上可知存在实数a=e2,使f(x)的最小值是3


(3)证明:由(2)知:当x∈(0,e],e2x﹣lnx≥3,∴lnx≤e2x﹣3,

n个式子相加得:


【解析】(1)当a=1时,求函数的定义域,然后利用导数求函数的极值和单调性;(2)利用导数求函数的最小值,让最小值等于3,解参数a;(3)根据函数的单调性得到lnx≤e2x﹣3,令x= ,累加即可.
【考点精析】解答此题的关键在于理解利用导数研究函数的单调性的相关知识,掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减,以及对函数的极值与导数的理解,了解求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某电影院共有1000个座位,票价不分等次,根据影院的经营经验,当每张票价不超过10元时,票可全售出;当每张票价高于10元时,每提高1元,将有30张票不能售出,为了获得更好的收益,需给影院定一个合适的票价,需符合的基本条件是:①为了方便找零和算账,票价定为1元的整数倍;②电影院放一场电影的成本费用支出为5750元,票房的收入必须高于成本支出,用x(元)表示每张票价,用y(元)表示该影院放映一场的净收入(除去成本费用支出后的收入) 问:
(1)把y表示为x的函数,并求其定义域;
(2)试问在符合基本条件的前提下,票价定为多少时,放映一场的净收人最多?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)=ax2﹣(2a+1)x+a+1对于任意a∈[﹣1,1],都有f(x)<0,则实数x的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y=Asin(ωx+φ)在一个周期内的图象如图,此函数的解析式为(
A.y=2sin(2x+
B.y=2sin(2x+
C.y=2sin(
D.y=2sin(2x﹣

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的几何体是由棱台 和棱锥拼接而成的组合体,其底面四边形是边长为 的菱形,且 平面

1)求证:平面 平面

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)在其定义区间[a,b]上满足①f(x)>0;②f′(x)<0;③对任意的x1 , x2∈[a,b],式子 恒成立.记S1= f(x)dx,S2= (b﹣a),S3=f(b)(b﹣a),则S1 , S2 , S3的大小关系为 . (按由小到大的顺序)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex﹣ex+4sin3x+1,x∈(﹣1,1),若f(1﹣a)+f(1﹣a2)>2成立,则实数a的取值范围是(
A.(﹣2,1)
B.(0,1)
C.
D.(﹣∞,﹣2)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)当时,求函数的最大值;

(2)若,且对任意的 恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)是定义在[﹣1,1]上的奇函数,且f(1)=1,若m,n∈[﹣1,1],m+n≠0 时,有
(1)求证:f(x)在[﹣1,1]上为增函数;
(2)求不等式 的解集;
(3)若 对所有 恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案