【题目】已知椭圆()的焦距为2,椭圆的左右焦点分别为,过右焦点作轴的垂线交椭圆于两点,.
(1)求椭圆的方程;
(2)过右焦点作直线交椭圆于两点,若△的内切圆的面积为,求△的面积;
(3)已知,为圆上一点(在轴右侧),过作圆的切线交椭圆于两点,试问△的周长是否为一定值?若是,求出该定值,若不是,请说明理由.
【答案】(1);(2);(3)是,.
【解析】
(1)由题意结合椭圆的性质可得,再由点即可求得、,即可得解;
(2)由题意结合椭圆的性质可得△的周长,再由(为内切圆半径)即可得解;
(3)按照斜率是否存在讨论,当直线斜率存在时,设,,由两点之间距离公式、椭圆性质可得焦半径、,联立方程结合韦达定理、弦长公式可得,再由直线与圆相切可得,代入运算即可得解.
(1)由椭圆焦距为2可得,,
又过右焦点作轴的垂线交椭圆于、两点,,
不妨设点,则,解得,,
所以椭圆的方程为;
(2)由题意△的周长,
又△的内切圆的面积为,所以△的内切圆的半径为,
所以△的面积;
(3)由题意,圆心为,半径为,
若斜率不存在时,不妨设点,
此时△的周长;
当直线斜率存在时,设,,
则即,
则,
同理,,
由消去y得,,
则,
由直线与相切可得,即,
所以
,
因为在轴右侧,所以,
所以
,
所以△的周长
;
综上,△的周长为一定值,且周长.
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,曲线过点,其参数方程为 (为参数,),以为极点,轴非负半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求曲线的普通方程和曲线的直角坐标方程;
(2)求已知曲线和曲线交于,两点,且,求实数的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地有三家工厂,分别位于矩形ABCD的顶点A,B,及CD的中点P处,已知km,,为了处理三家工厂的污水,现要在矩形ABCD的区域上(含边界),且A,B与等距离的一点O处建造一个污水处理厂,并铺设排污管道AO,BO,OP,设排污管道的总长为ykm.
(I)按下列要求写出函数关系式:
①设,将表示成的函数关系式;
②设,将表示成的函数关系式.
(Ⅱ)请你选用(I)中的一个函数关系式,确定污水处理厂的位置,使三条排水管道总长度最短.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有4位同学在同一天的上午、下午参加“身高与体重”、“立定跳远”、“肺活量”、“握力”、“台阶”五个项目的测试,每位同学测试两个项目,分别在上午和下午,且每人上午和下午测试的项目不能相同.若上午不测“握力”,下午不测“台阶”,其余项目上午、下午都各测试一人,则不同的安排方式的种数为( )
A.264B.72C.266D.274
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中国人民大学发布的《中国大学生创业报告》显示,在国家“双创”政策的引导下,随着社会各方对于大学生创业实践的支持力度不断加强,大学生创业意向高涨,近九成的在校大学生曾考虑过创业,近两成的学生有强烈的创业意向. 数据充分表明,大学生正以饱满的热情投身到创新创业的大潮之中,大学生创业实践正呈现出生机勃勃的态势。小张大学毕业后从2008年年初开始创业,下表是2019年春节他将自己从2008—2018年的净利润按年度给出的一个总的统计表(为方便运算,数据作了适当的处理,单位:万元).
年度 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
年份序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
利润 | 6 | 7 | 8 | 9 | 10 | 10 | 11 | 12 | 13 | 13 | 14 |
(Ⅰ)散点图如图所示,根据散点图指出年利润(单位:万元)和年份序号之间是否具有线性关系?并用相关系数说明用线性回归模型描述年净利润与年份序号之间关系的效果;
(Ⅱ)试用线性回归模型描述年净利润与年份序号之间的关系:求出年净利润关于年份序号的回归方程(系数精确到0.1),并帮小张估计他2019年可能赚到的净利润.
附注:参考数据.
参考公式:.且越大拟合效果越好.回归方程斜率的最小二乘法估计公式为:.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com